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The immune system maintains health but also contributes 
to diverse pathologies1. The extent of immune responses 
to a perturbation or disease varies across individuals in the 

population, so there is a pressing need to uncover predictors and 
determinants of immune responsiveness in humans2–4. Human 
immune responses are not only shaped by genetics but are also 
markedly influenced by the environment3,5,6; for example, antibody 
responses to vaccination show little heritability after infancy or early 
childhood7,8. Increasing evidence supports the hypothesis that the 
immune state of an individual before a perturbation can predict 
and determine immune response outcomes3. However, the molecu-
lar and cellular basis for the few existing baseline peripheral blood 
cell frequency or transcriptional predictors in humans9–12 remains 
largely unknown.

Some immunologic mechanisms that contribute to protec-
tive immune responses in vaccination and infection can mediate 
undesirable disease activity in patients suffering from an autoim-
mune disease. Notably, responses to influenza, yellow fever and 
many other vaccines and infections are characterized by a plas-
mablast increase detectable in blood3. A plasmablast increase has 
been shown to coincide with disease activity in some autoim-
mune patients, such as a subset of the patients with systemic lupus  

erythematosus (SLE)13, a chronic, heterogeneous autoimmune  
disease that often presents clinically with episodic disease flares 
affecting multiple organs14. We thus hypothesized that there are 
common baseline determinants that contribute to the responsive-
ness to both vaccination/infection and autoimmunity in the form 
of undesirable disease activity. The determinants of disease activity, 
such as the intensity of flares in SLE, are poorly understood and 
predictors of such activity remain elusive15. Given the availability of 
longitudinal blood transcriptomic data in SLE13 and the relevance 
of plasmablasts in both vaccination/infection and SLE, we use SLE 
in the current study as a model for exploring common baseline sig-
natures associated with vaccine responses in healthy individuals 
and autoimmune disease activity in patients.

We show that a baseline, temporally stable peripheral blood sig-
nature predictive of antibody responses to influenza vaccination12 is 
also predictive of responses to the yellow fever vaccine in individu-
als naive to the virus. The same signature evaluated at clinical qui-
escence (baseline-like) is associated with disease activity in patients 
with SLE with flares characterized by an elevation in plasmablast 
signature scores (Fig. 1a). Conversely, a biologically related base-
line indicator of disease flares derived solely from the same sub-
set of patients with lupus is correlated with antibody responses to 
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Fig. 1 | Study questions and the derivation of a baseline, pre-vaccination signature predictive of response using an influenza vaccination cohort.  
a, Overview of the study and research questions. b, Prediction performance for antibody response in the NIH influenza study12 using the frequency of 
several B cell subsets (y axis) (see Methods and gating strategy outlined in Extended Data Fig. 1a). The left panel shows the AUC (area under receiver 
operator curve; x axis) for predicting high and low responders (n = 23 with flow cytometry data) to the seasonal and pandemic H1N1 influenza vaccines12. 
The right panel shows the temporal stability metric (TSM) (x axis); higher TSM indicates greater temporal stability over the three baseline time points 
(days −7 and 0 prior to vaccination and day 70 after vaccination) using 136 samples from 51 subjects. Population 2 (red box) is the CD19+CD20+CD38++ 
B cell population. c, Flow chart showing the steps to derive the gene expression based surrogate signature (TGSig). d, Top temporally stable genes 
correlated with the frequency of CD19+CD20+CD38++ B cells and the selected genes in TGSig (red box). Twenty-two high and low responders (those 
with both gene expression and flow cytometry data) are used to assess correlations and rank genes. Genes are ranked based on the average Spearman 
correlation divided by the standard deviation obtained from 231 iterations (as a safeguard against noise we iterated over all sub-cohorts containing 20 
subjects by taking out 2 random subjects at a time (that is, excluding 2 out of 22 subjects) to assess the correlation). See Extended Data Fig. 2a–d and 
Methods for further details about temporal stability, gene selection, and signature score calculation. e, Top: box plots comparing the TGSig score (y axis)  
at day 0 (pre-vaccination) between low (n = 11) and high (n = 13) responders (x axis) (Wilcoxon one-tailed P value shown); bottom: receiver operating 
curve (ROC) for assessing predictive capacity (AUC and one-tailed permutation test P value shown). Box plot centre lines correspond to the median value; 
lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles); and lower and upper whiskers extend from the box  
to the smallest or largest value correspondingly, but no further than 1.5× inter-quantile range. f, Similar to e but for the other two baseline time points:  
day −7 (10 low and 14 high responders) and day 70 (11 low and 12 high responders).
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influenza vaccination in healthy subjects. We thus provide robust 
evidence for baseline ‘set point’2 signatures shared among vacci-
nated healthy subjects and patients with SLE. Simultaneous protein 
and transcriptome analysis16 (CITE-seq; cellular indexing of tran-
scriptomes and epitopes by sequencing) of single peripheral blood 
mononuclear cells (PBMCs) from healthy high and low respond-
ers of influenza vaccination revealed that our signatures reflect the 
extent of activation in multiple immune cell populations at baseline, 
including plasmacytoid dendritic cells (pDCs) and lymphocytes. 
These findings suggest that future responsiveness potential can be 
stably encoded by the activation status of a cellular network before 
perturbation and provide interventional targets that can potentially 
be modulated—at baseline and under homeostatic conditions—to 
improve human health.

Results
Development of a temporally stable transcriptional baseline sig-
nature predictive of antibody responses to influenza vaccination. 
We previously identified a baseline (pre-vaccination), temporally 
stable signature predictive of antibody responses to influenza vacci-
nation independent of age, gender and pre-existing antibody levels12.  
The signature consisted of the frequency of several B and T cell 
subpopulations without antigen-specific information. We subse-
quently noticed that all the predictive B cell populations expressed 
CD20 and high levels of CD38 (CD19+CD20+CD38++), suggesting 
that these markers together defined a core predictive population 
(Extended Data Fig. 1a). We quantified this and related populations 
in the three baseline time points in our original NIH influenza vac-
cination study (days −7 and 0 prior to vaccination and day 70 when 
the parameters altered by vaccination had returned to their original 
values)12,17 (Fig. 1b). As expected, high and low antibody responders 
(defined using the ‘adjMFC’ metric that does not depend on pre-
existing antibody levels against influenza12) could be distinguished 
by the frequency of the CD20+CD38++ cells at all three time points 
(Extended Data Fig. 1b, c). As observed previously12, this signature 
was independent of plasmablasts (CD20−CD38++), which alone 
could not predict the response (AUC = 0.55; Fig. 1b).

To test whether our CD20+CD38++ signature could predict 
immune responsiveness in other scenarios using independent 
datasets, we developed a blood-based transcriptional surrogate as 
available public datasets either do not have flow cytometry data 
or, if present, do not measure the same cell subsets. We identified 

temporally stable genes robustly correlated with the frequency of 
CD20+CD38++ cells across subjects on day 0 in the NIH cohort to 
build a 10-gene signature (TGSig, see Glossary in Extended Data 
Fig. 1d) (Fig. 1c–e, Extended Data Fig. 2a–f and Supplementary 
Table 1; see also Methods). TGSig has AUCs comparable to the fre-
quency of CD20+CD38++ B cells when evaluated in the other two 
baseline time points (Fig. 1f), and it was robust against removal 
of genes (Extended Data Fig. 2g). Similar and statistically signifi-
cant trends were observed when middle responders were included 
(Extended Data Fig. 3a).

Evaluating TGSig in independent influenza and yellow fever 
vaccination datasets. We next assessed TGSig in independent 
influenza vaccination cohorts from multiple institutions. These 
data together with our NIH cohort span three geographic loca-
tions within the US and vaccination years (2008, 2009, 2011 and 
2012)10 (Supplementary Table 2). Application of TGSig to the pre-
vaccination, baseline data of multiple datasets without any further 
model training showed good prediction performance (AUCs > 0.8; 
P < 0.05 permutation test) (Fig. 2a; see also Extended Data Fig. 3b, 
which includes middle responders). However, it lacked predictive 
power when applied to influenza vaccination data from another 
US institution covering four consecutive vaccination years (2008–
2011)18, which became available after our initial analyses (Extended 
Data Fig. 3c). While many technical or biological factors could be 
responsible for this result, we have ruled out differences in low-level 
data processing or high/low responder definition (see Methods).

We next investigated whether TGSig could predict responses to 
a live viral infection by using yellow fever vaccination (YF-17D) 
given to healthy adults naive to YF-17D as a model19. Unlike 
responses to the influenza (dead/inactivated) vaccine, YF-17D is a 
live, attenuated virus that would be expected to generate an antibody 
response through partially distinct immunological mechanisms. 
TGSig applied to pre-vaccination PBMC expression data was again 
able to separate high and low responders in the larger of two inde-
pendent trials (Fig. 2b; AUC = 0.86, P = 0.014 permutation test; see 
also Extended Data Fig. 3d, which includes middle responders).  
A similar but not statistically significant trend was observed 
in a smaller second independent trial that had fewer subjects  
(4 high and 3 low responders; Extended Data Fig. 4a) (AUC = 0.75; 
P = 0.11 permutation test). A meta-analysis of the influenza vac-
cination datasets for which TGSig exhibited predictive capacity at 

Fig. 2 | Assessing TGSig in independent influenza vaccination, yellow fever vaccination and SLe datasets. a, Same as Fig. 1e in terms of statistical tests 
and plot types, but here showing the predictive performance of TGSig (evaluated at baseline/pre-vaccination) in the indicated independent datasets: 
Stanford 2008 (purple boxes; 10 high versus 8 low responders), Yale 2011 (turquoise; 6 high versus 7 low responders) and Yale 2012 (green; 8 high versus 
7 low responders) with the corresponding ROC shown at the bottom. b, Similar to a but for yellow fever vaccination. This cohort (trial 1) included 6 high 
and 6 low responders; see Extended Data Fig. 4a for results on a second, smaller cohort (trial 2) with 10 subjects (4 high and 3 low responders) from the 
same publication19. See also Extended Data Fig. 3d for box plots that include middle responders. c, SLE patient groups determined based on the blood 
gene expression signatures associated with disease activity/flares (see also Extended Data Fig. 5a and Methods). The color and size of the circle denote 
the average statistical significance (−log10 of BH (Benjamini–Hochberg)-adjusted P values from the CERNO test39) of the association across patients in 
the group. The patient group IDs (columns) are listed with the number of patients in each group in parentheses. The same phenotypic annotations from 
ref. 13 are used: ER, erthryopoiesis; IFN, IFN response/neutrophils; ML, myeloid lineage/neutrophils; PB, plasmablasts; LL, lymphoid lineage. The three 
groups with prominent PB signatures are boxed in red. d, Overview of the analysis approach. The dynamics of disease activity (DA) as measured by the 
SLE disease activity index (SLEDAI) score of an actual patient is shown. Individual visits are shown as dots (low disease activity (blue dots), SLEDAI < 3; 
medium disease activity (grey), SLEDAI = 3–7; high disease activity (red), SLEDAI ≥ 8). The TGSig score was computed from the low disease activity 
time points and the DaCP was computed from all time points using a mixed effect model accounting for treatment effects (see Methods); the correlation 
between TGSig (averaged across low disease activity time points) and DaCP was then evaluated. DaCP, disease-activity-associated change in plasmablast 
score. e, Scatterplot showing the relationship between the DaCP (y axis) and the mean TGSig score at low disease activity time points (x axis) in patient 
groups 2, 3 and 4 (34 subjects; left panel) and subjects whose disease activity tended not to be associated with a plasmablast signature (patient groups 1, 
5, 6 and 7; 27 subjects; right panel). Pearson correlation coefficients and two-tailed P values are shown, and for the left panel separately for patient groups 
2 and 3 only (blue dots, n = 22) or groups 2, 3 and 4 (blue and grey dots; n = 34). As a robustness check we also computed the Spearman correlation: 
rho = 0.47 (P = 0.029 two-tailed test) for groups 2 and 3; rho = 0.36 (P = 0.038 two-tailed test) for groups 2, 3 and 4; rho = −0.12 (P = 0.56 two-tailed test) 
for the rest of the patient groups. f, Same as in e but the plasmablast signature score was computed from the low disease activity time points instead of 
TGSig. Groups 2 and 3: Spearman rho = 0.014 (P = 0.95 two-tailed test); groups 2, 3 and 4: rho = −0.006 (P = 0.97 two-tailed test).
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the individual cohort level (Stanford 2008, NIH 2009, Yale 2011, 
Yale 2012) indicated that genes in TGSig had positive ‘meta’ effect 
sizes and were thus positively associated with antibody responses 
(Extended Data Fig. 4b); the effect sizes were also qualitatively 
consistent with those in the yellow fever dataset (Extended Data 
Fig. 4c). Together, our data revealed that TGSig could predict the 
antibody response to a live attenuated virus in subjects naive to the 
virus and to the inactivated seasonal influenza vaccine in several, 
but not all, healthy cohorts tested.

Evaluating TGSig in SLE. We next assessed the hypothesis that 
TGSig evaluated at clinically quiescent periods of SLE patients (that 
is, low or no disease activity, resembling ‘baseline’) might also be 
associated with the severity of flares (Fig. 1a), which is dynamic and 
conceptually similar to responses following vaccination or infec-
tion. We analyzed a longitudinal paediatric SLE cohort13 in which 
the SLEDAI, a clinical assessment score that combines disease activ-
ity in several organs and clinical categories,13 was used to quantify 
disease activity over time. Previous analysis of this cohort identified  

Other SLE patients
SLE patients with plasmablast

signature during flare
SLE patients with plasmablast

signature during flare

e

c d

f

0 300 600 900

0

3

7

10

15

Time (days)

S
LE

D
A

I

High
DA

Low
DA

Mid
DA

DaCP Evaluate
correlation

Δ

TGSig score 
computed at 
low DA visits

D
aC

P

D
aC

P

PG2/3:

r = 0.54

P = 0.010

PG2/3/4:

r = 0.36

P = 0.037

r = −0.12

P = 0.56

−1.0 −0.5 0.0 0.5 −1.0 −0.5 0.0 0.5

−1

0

1

2

Mean TGSig score at low DA time points

PG2/3:

r = 0.23

P = 0.3

PG2/3/4:

r = 0.15

P = 0.4

0

1

2

−1 0 1 2

Mean PB score at 
low DA time points

a b

P = 0.012 P = 0.013 P = 0.028

Stanford 2008 Yale 2011 Yale 2012

Low High Low High Low High
−0.8

−0.4

0.0

0.4

Response

R
el

at
iv

e 
T

G
S

ig
 s

co
re

 

AUC = 0.81
P = 0.0090.00

0.25

0.50

0.75

1.00

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

S
e

n
si

tiv
ity

AUC = 0.88
P = 0.0050.00

0.25

0.50

0.75

1.00

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

Specificity

AUC = 0.80
P = 0.0440.00

0.25

0.50

0.75

1.00

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

P = 0.023

Yellow fever

Low High

−0.5

0.0

0.5

Response
R

el
at

iv
e 

T
G

S
ig

 s
co

re

AUC = 0.86
P = 0.0140.00

0.25

0.50

0.75

1.00

0.
00

0.
25

0.
50

0.
75

1.
00

Specificity

S
en

si
tiv

ity

PG
1 

(7
)

PG
2 

(1
2)

PG
3 

(7
)

PG
4 

(1
2)

PG
5 

(6
)

PG
6 

(7
)

PG
7 

(4
)

ER

SLE patient groups

IFN

ML

PB

LL

0 5 10 15

Mean –log(FDR)

NATuRe MediCiNe | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


ArticlesNature MediciNe

seven patient groups in which disease activity (that is, SLEDAI 
score) correlated with distinct combinations of blood transcrip-
tomic signatures, including a module enriched for plasma cells/
plasmablasts13 (Fig. 2c). We hypothesized that for patients whose 
disease activity was correlated with a plasma cell/plasmablast signa-
ture (Fig. 2c and Extended Data Fig. 5a: patient group (PG) 2 and 
PG3, and to a lesser extent, PG4), the disease-activity-associated 
change in plasmablast score (DaCP, see Extended Data Fig. 1d) 
between periods of low and high disease activity may be correlated 
with the TGSig evaluated at clinically quiescent periods (Fig. 2d).

We created a mixed-effects model to estimate the DaCP for PG2, 
PG3 and PG4 after accounting for treatments (see Methods). As 
expected, the DaCP values estimated by our procedure were cor-
related with the change in the average plasmablast score between 
low and high disease activity periods (Extended Data Fig. 5b). We 
detected a mild but significant correlation between the mean of 
TGSig across periods of low disease activity (SLEDAI < 3) and DaCP 
(Pearson r = 0.359, P = 0.037; Fig. 2e). This correlation was stronger 
in PG2 and PG3 only (Pearson r = 0.535, P = 0.010) because PG4 
often had weaker plasmablast signals associated with disease activity  
(Extended Data Fig. 5a). To further evaluate this hypothesis, we 
tested the correlation when we removed patients whose DaCP was 
lower than a set threshold. We observed that the correlation tended 
to increase as the threshold increased (Extended Data Fig. 5c,d),  
confirming that the correlation between TGSig and DaCP was 
specific to those patients with plasmablast-associated flares. As a 
control, we performed the same analyses for patients who did not 
show a plasmablast signature (PG1, PG5, PG6 and PG7; Fig. 2c) 
and found no correlation (Pearson r = −0.116, P = 0.56; Fig. 2e, right 
panel). We also confirmed that there was no correlation between the 
DaCP and the mean plasmablast score at low disease activity time 
points in PG2, PG3 and PG4 (Fig. 2f). Thus, the plasmablast signa-
ture evaluated at periods of low disease activity was not predictive 
and TGSig did not reflect plasmablast activity. These results suggest 
that for SLE patients whose disease activity was associated with a 
plasmablast signature, TGSig evaluated during clinical quiescence 
can inform the magnitude of disease flares. These findings also 
expand the predictive value of TGSig from response to vaccines and 
infections to that associated with flares in a specific subtype of SLE.

An independently derived baseline signature from SLE is asso-
ciated with influenza vaccination responses. Our results sug-
gest a biological parallel between vaccination/infection responses 
and lupus disease activity. We therefore examined whether an 

independently derived correlate of DaCP in SLE patients alone may 
conversely associate with the magnitude of antibody responses to 
vaccination. We focused again on PG2, PG3 and PG4 (Fig. 2c) and 
used weighted gene co-expression network analysis (WGCNA)20 
to investigate whether there are temporally stable (across low dis-
ease activity time points) gene expression modules associated with 
DaCP (Fig. 3a, Supplementary Fig. 1a and Supplementary Table 3a; 
see also Methods). One module (the ‘brown’) was mildly correlated 
with the DaCP (Fig. 3b and Supplementary Fig. 1b; Pearson r = 0.31, 
P = 0.04 permutation test; full results in Supplementary Table 3b) 
but, intriguingly, it was enriched for type I IFN related blood tran-
scription modules (BTMs)21 (Fig. 3c and Supplementary Fig. 1c), 
consistent with type I IFN signatures seen in many SLE patients22. 
Our observation suggests that the magnitude of a type I IFN signa-
ture during clinical quiescence may be prognostic of disease activity 
for patients exhibiting plasmablast-associated flares.

To assess whether the brown module was correlated with vaccina-
tion responses, we used the meta-analysis results of influenza cohorts 
above to maximize statistical power (Supplementary Table 4a)  
and found that the brown module was significantly enriched for genes 
associated with antibody responses (P = 0.01, GSEA test; Fig. 3d  
and Supplementary Table 4b). However, this was not the case for 
the yellow fever dataset (data not shown), perhaps due to the small 
cohort size and thus insufficient statistical power. Together, these 
observations provide independent support to our TGSig finding 
above that shared baseline signatures can exist for influenza vac-
cination responses and SLE disease activity.

Both baseline signatures are associated with type I IFN responses 
and activation of dendritic cells. Given their qualitatively similar 
predictive profiles, TGSig and the brown module might reflect over-
lapping biology, even though they shared only one gene (EPHB1) 
from the 370 genes in the brown module. Since TGSig was derived 
from the temporally stable genes most robustly correlated with the 
frequency of CD20+CD38++ B cells (Fig. 1d), we ranked the tempo-
rally stable genes by their correlation with the frequency of these 
B cells and found that the most correlated genes were enriched for 
the brown module as well as type I IFN and dendritic cell (DC) 
activation related BTMs (Fig. 3e; see Methods). These results estab-
lished functional links between the brown module and TGSig, and 
suggest that they reflect aspects of the type I IFN response/DC acti-
vation pathway. To capture the biology of this overlap for further 
analysis, we created the IFN-I-DCact (type I IFN and DC activation; 
see Extended Data Fig. 1d) gene signature comprising genes in the 

Fig. 3 | A transcriptional correlate of plasmablast-associated disease activity in SLe is also associated with influenza vaccination responses and 
functionally related to TGSig. a, Identification of 18 transcriptomic modules from genes whose expression was temporally stable across low disease 
activity time points in SLE patients from patient groups 2, 3 and 4. The heatmap shows the eigengene of each module averaged across low disease activity 
time points of each patient. Rows and columns correspond to modules and SLE patients, respectively. The number of genes in each module is shown in 
Supplementary Fig. 1a. b, Scatterplot showing the relationship between the brown module score and the DaCP for patients in groups 2, 3 and 4 as above 
(n = 34; Pearson correlation = 0.31, P = 0.04 based on a one-tailed permutation test (Supplementary Fig. 1b)). Spearman rho = 0.29 (P = 0.05 one-tailed 
permutation test) c, Top enriched blood transcription modules21 (BTMs) of the brown module (370 genes) based on the hypergeometric test with  
BH-adjusted P values (FDR) shown; the red line corresponds to 1% FDR (no additional BTMs were identified at 5% FDR cutoff). Complete results of the 
enrichment analysis can be found in Supplementary Fig. 1c. d, Gene set enrichment analysis (GSEA) of the brown module genes (370 genes). 6,563 genes 
were ranked by their magnitude of association with antibody responses based on a meta-analysis of four influenza vaccination datasets (the enrichment 
P value shown was computed from the GSEA test40). The tick marks denote the location of the genes in the brown module. e, Top: enrichment analysis 
of blood transcription modules and the brown module in the temporally stable genes from the NIH influenza study as ranked by their correlation with 
the frequency of CD20+CD38++ B cells. A temporal stability score (see Methods) cutoff of 0.5 is used here to define 7,889 stable genes; the enrichment 
results are robust to the threshold used. 5% and 1% FDR are indicated by the red dashed lines (BH-adjusted P values shown were computed from the 
GSEA test). Bottom: GSEA enrichment plot for the brown module. The top 87 genes in the brown module (based on the gene rank on the x axis) were 
identified by GSEA as the ‘leading edge genes’ (that is, the main driver of the enrichment signal) (we called this gene set SLE-Sig). The P value shown was 
computed from the GSEA test. The full list of leading-edge genes can be found in Supplementary Table 5. f, Genes in the brown module that are also in at 
least one of the three top type I IFN/antiviral/dendritic cell activation BTMs from e; black dots indicate that the gene is present in the indicated gene set. 
These genes constitute the IFN-I-DCact gene set/signature reflective of type I IFN and DC activation.
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brown module that are shared with at least one of the IFN-I/antivi-
ral/DC activation BTMs (Fig. 3f).

We also evaluated the overlap among TGSig, SLE-Sig and IFN-
I-DCact from a predictive standpoint by using data pooled from 
the meta-analysis above (see Methods). As expected, each signa-
ture on its own contained predictive information (Extended Data  
Fig. 6a–c), and most of the predictive capacity of the brown mod-
ule came from the 87 ‘leading edge’ genes (SLE-Sig, see Extended 
Data Fig. 1d; see also Fig. 3e, Supplementary Table 5, Extended Data  

Fig. 6d). When TGSig was used together with SLE-Sig or IFN-I-
DCact for prediction, TGSig was the dominant predictor (Extended 
Data Fig. 6e,f). The same was true for predicting DaCP in the SLE 
cohort (data not shown). Thus, TGSig, as a baseline signature, 
contains most of the predictive information in SLE-Sig and IFN-I-
DCact for both influenza vaccination and SLE disease activity.

CITE-seq analysis of high and low influenza vaccination respond-
ers to uncover the cellular origin of baseline signatures. To dissect 
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the cellular origin of our signatures, we sorted CD19+CD20+CD38++ 
B cells from six healthy donors followed by RNA-seq (Extended 
Data Fig. 7a,b). However, genes differentially expressed in these 
cells compared to CD19+CD20+ B cells were not enriched for TGSig 
or SLE-Sig (Extended Data Fig. 7b–e), suggesting that neither origi-
nate from these cells.

Given the large number of possible cellular origins for TGSig and 
SLE-Sig, we pursued an unbiased approach by adopting CITE-seq16 
to simultaneously profile 82 surface proteins (covering lineage and 
phenotypic markers of diverse immune cells) and the transcrip-
tomes of 53,201 single cells from the baseline (day 0/pre-vaccina-
tion) PBMC of 10 high and 10 low responders from the NIH cohort 
(Fig. 4a; average 2,660 (SD = 753) cells per donor). A major goal 
was to assess whether our baseline signatures reflect transcriptional 
state differences between the high and low responders in certain  
cell subsets.

We clustered the cells23 at several resolutions using their surface 
protein expression profile to reveal major cell types and subsets  
(Fig. 4a–c and Extended Data Fig. 8a–c; see Methods). The frequency 
of most cell clusters was not significantly associated with vaccina-
tion responses, except, for example, negative associations involving 
effector CD4+ memory (cluster C1.1.0) (data not shown), which is 
consistent with the original study (ID36 in Fig. 6c in ref. 12). TGSig 
computed using the ‘pseudo bulk’ data (averaged across all single 
cells for each subject; see Methods) was significantly higher in the 
high than the low responders (Fig. 4d). The same holds for SLE-Sig 
(Fig. 4e) and the frequency of manually gated CD20+CD38++ B cells 
using CITE-seq data (Extended Data Fig. 8d,e; P = 0.032 Wilcoxon 
one-tailed test). Thus, CITE-seq data reproduced our earlier find-
ings from microarray and flow cytometric measurements.

We next evaluated TGSig and SLE-Sig differences between high 
and low responders within cell clusters (Supplementary Tables 6 
and 7). Significant differences in the average expression of TGSig 
genes were found in pDCs (cluster C9), a major producer of type I 
IFNs and other cytokines24 (Fig. 5a). SLE-Sig (Fig. 5b) was elevated 
broadly across cells clusters, including CD4+ central memory and 
CD8+ naive T cells (C1 and C6), classical monocytes and myeloid 
DCs (mDCs) (C2), transitional B cells (C3.0.0), and unconventional 
T cells (C7) (Fig. 5b). While the other clusters were not statistically 
significant, SLE-Sig trended higher in the high responders, sug-
gesting that most peripheral immune cells were broadly exposed to 
higher levels of IFNs in high responders at baseline. Similar results 
were obtained using an independently derived type I IFN response 
gene set (Extended Data Fig. 8f and Supplementary Tables 6 and 7; 
see Methods).

Given that pDCs are major producers of type I IFN24, the ele-
vated type I IFN status in high responder cells from diverse lineages 
may be due to the presence of more activated pDCs in these indi-
viduals; we indeed found that the average expression of the genes in 
LI.M165 and IFN-I-DCact—both reflective of DC activation and 

linked to TGSig and SLE-Sig (Fig. 3e,f)—was significantly elevated 
in pDCs of high responders (Fig. 5c).

Activated pDCs are known to activate T cells that then stimu-
late B cells via CD40L24,25. To test whether we can detect the acti-
vation status of this circuit even at baseline, we derived a CD40 
activation gene signature (CD40act; see Extended Data Fig. 1d) 
(Supplementary Table 6) from two independent studies of human 
B cells stimulated with CD40L26,27 (see Methods). CD40act was 
highly enriched for cell cycle processes (Fig. 5d), probably because 
CD40L-activated B cells are highly proliferative28. As hypothesized, 
CD40act was significantly increased in switched B cells (C3.1.0) in 
high responders (Fig. 5e). It was also elevated significantly in several 
lymphocyte clusters (see Fig. 4b,c and Extended Data Fig. 8a,c for 
cell cluster annotations), including CD4+ memory (C1.0.0), CD8+ 
naive (C6) and unconventional CD161+ T cells (C7.0.0) (Fig. 5e). 
Together, these observations suggest that in high responders, the 
increased activation of pDCs and elevation of type I IFNs led to the 
activation and proliferation of not only switched B cells, but also 
T lymphocytes. Furthermore, we hypothesized and indeed observed 
that CD40 activation status in switched B cells (C3.1.0) was corre-
lated with the frequency of CD20+CD38++ B cells measured by flow 
cytometry (Fig. 5f). This suggests that the CD20+CD38++ cells, our 
original baseline signature (Fig. 1b and Extended Data Fig. 1a,b), 
overlapped with activated switched B cells.

TGSig captures the activation/cell cycle and type I IFN response 
statuses of lymphocytes and myeloid cells. We next analyzed the 
correlation among the signatures, including TGSig assessed in 
‘bulk’/PBMCs (Fig. 1c–e), the frequency of CD20+CD38++ B cells 
(Extended Data Fig. 1b), and the significant cell-cluster-based sig-
natures emerged from CITE-seq analysis (Fig. 6a). TGSig correlated 
with and thus captured the status of several signatures at the cell 
cluster level that delineated high versus low responders as deter-
mined by CITE-seq (left scatterplots in Fig. 6a). These signatures 
include both the activation/proliferation (as reflected by CD40act) 
and the type I IFN response statuses (as indicated by SLE-Sig) of 
switched B cell and several T cell clusters, and albeit more mildly, 
those of pDCs and mDCs. SLE-Sig (in PBMCs, as measured by 
microarrays) also captured the type I IFN response status of both 
lymphocytes and myeloid cells. However, SLE-Sig captured less well 
the activation/cell cycle status of switched B cells (C3.1.0) and T cell 
subsets (C1.0.0 and C6) (Fig. 6a), which were some of the most sig-
nificant correlates of the response as revealed by CITE-seq (Fig. 5e).

Our single cell data gave us an opportunity to drop specific 
combinations of cell clusters from the data, and then evaluate 
whether the signature scores computed from the remaining cells 
are still associated with the response (Extended Data Fig. 8g). 
Consistent with the observations above, this analysis revealed that 
TGSig became uninformative of the response when both the CD4+ 
memory and CD8+ naive T cell clusters (C1 and C6) were dropped;  

Fig. 4 | CiTe-seq (simultaneous protein and transcriptome expression profiling in single cells) analysis of high and low influenza vaccine responders. 
a, Experiment and analysis overview: single PBMCs from 10 high (red) and 10 low (blue) responders (as defined by adjMFC previously12) were profiled by 
CITE-seq (measuring 82 cell surface proteins and transcriptome). Cells from all subjects were clustered together using only surface protein expression 
profile at three increasingly detailed clustering resolutions (referred herein as levels 1–3, denoting the lowest to the highest resolutions; see Methods).  
Ten cell clusters (C0–C9) were identified at level 1 and shown in different colors in the tSNE plot. b, Cell clusters from levels 1–3 are shown in three columns  
and depicted as circles (size is proportional to the number of cells in the cluster). The edges denote containment relationship between the clusters at 
neighbouring resolutions: an edge connecting one cluster to another cluster indicates that some fraction (or all) of the cells in the former are found in 
the latter. Annotations are provided for levels 1 (first column) and 3 (third column) clusters. The clusters/circles are colored, matching those in the tSNE 
visualization. c, A heatmap showing the average expression of selected protein markers (columns) in each of the cell clusters (rows) derived from the 
three different clustering resolutions. The cell cluster names are color matched with those in b. See Extended Data Fig. 8a–c and Supplementary Fig. 2 for 
additional details. d, Box plot comparing the TGSig score between high (filled dot; n = 10) and low (open dot; n = 10) responders using ‘pseudo bulk’ data 
(average across all single cells within each subject; see Methods); P value from Wilcoxon one-tailed test. Box plot centre lines correspond to the median 
value; lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles); and lower and upper whiskers extend from the 
box to the smallest or largest value correspondingly, but no further than 1.5× inter-quantile range. e, Same as d but for SLE-Sig.
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for SLE-Sig, the most important predictive information originated 
from the monocyte/mDC (C2) and CD4+ memory clusters (C1). 
Together, these observations suggest that even though TGSig only 
contains a few genes that were originally derived based on correla-
tions with the frequency of the CD20+CD38++ B cell population, it 
captures the responsiveness-predicting states of multiple cell subsets 

in peripheral blood, particularly those of two subpopulations of 
T lymphocytes that represent a substantial fraction of cells in blood.

discussion
To our knowledge, predictors of autoimmune disease activity, par-
ticularly from clinically quiescent periods, are rare29,30, and baseline 
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set point2 signatures shared among vaccination, infection and an 
autoimmune disease have not been reported. Our simultaneous deep 
immunophenotyping and transcriptome analysis of single cells sug-
gests that these predictive signatures reflect the extent of cell cycle/
activation and type I IFN response statuses in a circuit comprising 
pDCs, switched B cells and T lymphocytes (Fig. 6b), thus pointing 
to a shared origin for our two independently derived but biologi-
cally related set point signatures. The sustained activation of these 
and related circuits have been implicated in the pathogenesis of SLE 
and other autoimmune diseases31, but here we provide fresh evi-
dence that the elevated activation status of cells in this circuit dur-
ing clinically quiescent periods in a subset of patients with SLE may 
indicate higher plasmablast-associated disease activity. Intriguingly, 
this circuit was also more activated in certain healthy subjects stably 
over the course of months, and these individuals tended to mount 
higher antibody responses to influenza or yellow fever vaccina-
tion. Thus, the future responsiveness potential to a perturbation 
can be encoded by the sustained activation status of a circuit that 
is typically fully activated only after an immune challenge (such as 
an infection). The mechanisms that restrain full-blown systemic 
immune activation before antigenic and inflammatory stimulation 
(particularly in healthy individuals) and the antigen-specificity rep-
ertoire of the activated lymphocytes at baseline remained to be dis-
sected (Fig. 6b).

Through CITE-seq analysis we found that the CD20+CD38++ 
B cells we identified originally are likely to overlap with activated 
switched B cells, some of which could also be precursors of plas-
mablasts32. It is unlikely that all of these cells were influenza spe-
cific or persistently activated by influenza at baseline and remained 
temporally stable over months. They could be enriched with influ-
enza specific cells in some individuals, but the fact that TGSig could 
predict responses in yellow fever naive subjects (Fig. 2b) suggests 
that TGSig does not simply reflect the frequencies of memory lym-
phocytes specific for particular vaccine antigens—unless this was all 
due to cross-reactivity, which is also unlikely. Furthermore, previous 
analysis of antigen-specific B cells12 in the NIH cohort showed that 
baseline vaccine reactivity did not correlate with antibody responses, 
which was consistent with independent observations33 that the fre-
quency of pre-existing influenza-specific B cells in peripheral blood 
does not correlate with antibody responses following vaccination. 
Similarly, higher frequencies of activated, influenza-specific CD4+ 
T cells in peripheral blood at baseline were not positively associated 
with T cell responses following influenza vaccination34.

Plasmacytoid DCs were probably a major source of type I IFNs 
that led to the elevated IFN response status across multiple cell lin-
eages in the high responders (Fig. 5b and Extended Data Fig. 8f). 
Since they represent only a small fraction of circulating immune 
cells, TGSig and SLE-Sig are likely to reflect less on the activation 

status of the pDCs but instead capture the downstream effects of 
pDCs on lymphocytes and monocytes, which are much more abun-
dant in blood. Together, these results also illustrate how deep single 
cell analysis in human subjects with distinct responsiveness phe-
notypes can help unmask cellular origins and provide mechanistic 
hypotheses on bulk blood transcriptomic biomarkers.

It remains to be determined why pDCs in healthy high respond-
ers were more activated—persistent triggers of TLR7/9 could be 
involved24. The microbiome could be responsible but seemed to 
largely affect naive than recall responses based on a recent study in 
influenza vaccination6. Cytomegalovirus (CMV) status is possible 
but less likely because a known correlate, the frequency of TEMRA 
cells35, was not significantly associated with responder class in our 
cohort (Extended Data Fig. 9a,b). While genetics could play a role, 
twin studies have indicated that antibody responses to influenza 
vaccination exhibit little heritability in adults7. Two relevant pDC 
phenotypes (HLA-DR and CD86 expression on pDCs (cluster C9))35 
with strong genetic drivers were not significantly different between 
high and low responders (Extended Data Fig. 9c). Similarly, none of 
the genes in TGSig was associated with any trans expression quanti-
tative trait loci based on a large-scale study of the genetics of blood 
gene expression in healthy subjects36. Age was not associated with 
TGSig in the NIH cohort (data not shown), but females tended to 
have higher TGSig scores than males (Extended Data Fig. 10a–c), 
which is consistent with earlier observation that females tend to 
mount higher responses to some vaccines but are more prone to 
autoimmunity37. Intriguingly, however, even within each sex, TGSig 
could predict responsiveness (Extended Data Fig. 10d,e), again sug-
gesting that TGSig is a general baseline predictor.

While TGSig’s applicability in influenza (across three out of four 
US locations and over four different years), yellow fever and SLE 
supports the notion that it reflects common baseline determinants 
shared by these immune response scenarios, it was not predictive in 
influenza datasets from a US location over four consecutive years. It 
also remains to be determined whether it is applicable to other situ-
ations such as cancer immunotherapy and additional autoimmune 
diseases with flares associated with plasmablasts. TGSig was spe-
cific to a defined subtype of lupus as we had hypothesized (Fig. 2e),  
and all of the vaccination cohorts tested largely consisted of younger 
adults (aged under 45 years). In general, baseline set point signa-
tures are probably not universally applicable but depend on fac-
tors such as age, ethnic background and geographic location10,38. 
Rigorous clinical trials are ultimately needed to assess the applica-
bility of these baseline signatures for different immune perturba-
tions and diseases.

Given the centrality of the immune system in health and disease, 
our findings point to the prospect for longitudinal immune health 
assessment and monitoring as well as predicting future responses 

Fig. 5 | dissecting the cellular origin of baseline signatures. a, Evaluating the difference in TGSig score between high (n = 10) and low (n = 10) responders 
in each cell cluster from Fig. 4b (see Methods). Left: box plot comparing high (filled dot) and low (open dot) responders in each of the level 1 clusters (first 
column); each dot corresponds to the signature score of a subject. Red asterisks denote significance with P < 0.05 (Wilcoxon one-tailed test; see also 
Supplementary Table 7). The right panel uses the same visualization as in Fig. 4b, but here the color reflects the average normalized difference in TGSig 
signature score between the high and low responders (shown here as a t statistic). *P < 0.05 and **P < 0.01 (Wilcoxon one-tailed test because we are 
interested in assessing whether the high responders are higher than the low responders; see also Supplementary Table 7). For all box plots the centre line 
corresponds to the median value, lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles), and lower and upper 
whiskers extend from the box to the smallest or largest value correspondingly, but no further than 1.5× inter-quantile range. b, Same as a but for SLE-Sig. 
c, Similar to the box plots in the left panel of a (10 high versus 10 low responders) but for the signature score of the LI.M165 BTM (top panel: enriched for 
dendritic cell activation) and the IFN-I-DCact (bottom panel; see Fig. 3f) gene sets evaluated for cells in the pDC cluster only (cluster C9). d, Enrichment 
analysis result of the CD40act gene set (Supplementary Table 6; 49 genes) using the hypergeometric test against the BTMs from ref. 21. All 32,738 
detected genes were used as a background. BTMs with an adjusted one-tailed P value (FDR computed using the BH method) of 0.05 (red line) or lower 
are shown. e, Same as a but for CD40act. f, Scatterplot (based on ranks, since Spearman correlation is being evaluated) assessing the correlation between 
the frequency of CD20+CD38++ B cells (see Fig. 1b) and the CD40 activation signature score in the switched B cell cluster (C3.1.0; see Fig. 4b,c). Spearman 
correlation and two-tailed P value are shown (based on 9 high and 9 low responders because not all 20 subjects assessed by CITE-seq have corresponding 
flow cytometry data). Detailed test statistics for data shown in a,b,e can be found in Supplementary Table 7.
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to vaccination, infection and other perturbations using just a few 
markers in blood. Set point signatures could also be used to strat-
ify populations in clinical trials and for properly accounting for 

baseline heterogeneity when analyzing trial outcomes. Our results 
motivate the search for additional shared baseline determinants 
and predictive signatures among vaccination, infection, cancer, and 
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Fig. 6 | The correlative relationship among the single-cell-cluster-based and bulk (PBMC) signatures and a proposed cellular circuit whose pre-perturbation 
status determines future responsiveness. a, Matrix heatmap showing the pairwise Spearman correlation between the select signature scores across subjects. 
Example scatterplots similar to the one in Fig. 5f are shown for assessing the correlation between the original TGSig (computed using microarray data generated 
from PBMCs; see Fig. 1c–e) and the cell cluster based signature scores found to be significantly different between high (n = 10) and low (n = 10) responders. 
Spearman correlation and two-tailed P value are shown. The name of the cell cluster (see Fig. 4b,c) for which the indicated signature score was computed is 
in parentheses. Each example scatterplot corresponds to a highlighted (yellow) entry in the matrix on the right. The matrix is symmetrical: row and column 
profiles are identical. The size and shade of the circle indicate the correlation strength (Spearman rho) and asterisks denote significance level (two-tailed test) 
as shown in legend below. Note that SLE-Sig (PBMC) was computed using the original bulk microarray data (the same as TGSig (PBMC)). b, Model describing 
the molecular/cellular underpinnings and differences between high versus low responders. Activation of this entire circuit (including the components in the 
plasmablast/plasma cell box on the right) typically follows infection, vaccination, or occurs during autoimmune disease flares. Here we propose that the high 
responders tend to have more activated pDCs and thus more Type I IFNs and activated B and T cells at baseline, but only upon additional antigenic and/or 
inflammatory co-stimulation (and flare trigger in the case of SLE patients) does the system mount a full-blown plasmablast/plasma cell response cumulating 
in the generation of antibodies. Open questions include: 1) What sets the system into such temporally stable ‘activated’ states in pDCs, lymphocytes, and 
other myeloid cells? 2) What constrains the activated immune baselines from mounting full-blown plasmablast/plasma cell responses? 3) What is the antigen 
specificity repertoire of the activated lymphocytes at baseline?
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autoimmune and inflammatory diseases, which may reveal new 
biology including common mechanisms underpinning different 
types of immune responses.
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Methods
Datasets. A summary of the datasets used in our study can be found in 
Supplementary Table 2. See also the ‘Life Sciences Reporting Summary’ 
accompanying this paper and the Data Availability section.

Software. A summary of the software packages used and their versions can be 
found in Supplementary Table 8. See also the ‘Life Sciences Reporting Summary’ 
accompanying this paper and the Code Availability section.

Predictive B cell populations. PBMC sample collection and processing are 
described previously12. The predictive baseline B cell populations identified12 
(ID103, ID96, ID91, ID108; Fig. 6 and Table S2 in ref. 12) had two important 
features: (1) high temporal stability (low within-subject variation (WSV)) with 
high inter-subject variation (ISV) (Fig. 2 in ref. 12); and (2) a positive correlation 
between the baseline/pre-vaccination cell frequencies and vaccine antibody 
response as quantified by the adjusted maximum fold change (adjMFC) (Fig. 6C 
in ref. 12). The adjMFC is a measure of antibody fold-change following vaccination 
after removing the nonlinear correlation between the maximum (log) fold 
change in antibody response and the baseline antibody titre, thus allowing for 
evaluation of predictive factors that are independent of the baseline antibody 
titre (see Methods in ref. 12). As in ref. 12, for all the influenza vaccination datasets 
we assessed in this study, we used the adjMFC metric to reflect the maximum 
titre to any of the vaccine components administered to a given subject, especially 
because the above B cell populations of interest, and therefore the associated 
transcriptional surrogate signatures we explored here, were not measured in an 
antigen-specific manner.

Flow cytometry data processing. See also the ‘Life Sciences Reporting Summary’ 
accompanying this paper. All flow cytometric quality control (for example, sample 
exclusion) and gating was performed before the analyses described below, for 
example, predictive modelling and surrogate transcriptional signature (TGSig) 
derivation. We gated four new subpopulations (based on CD38 and CD10 markers) 
inside the CD45+CD19+CD20+ live B cell gate (FlowJo ver.9.9.3, TreeStar/Becton 
Dickinson, Ashland, OR, on Mac OS X; Fig. 1b and Extended Data Fig. 1a).  
Gate 1: CD38+ cells with CD38 (G610-A; PE-Texas Red) fluorescent intensity 
greater than 1,000; gate 2: CD38++ cells with fluorescent intensity greater than 
10,000; gate 3: CD38++CD10+ cells with CD10 (R780-A; APC Cy7) fluorescent 
intensity greater than 1,000; gate 4: CD38++CD10− cells with CD10 fluorescent 
intensity less than 1,000. We exported cell frequencies, expressed as the percentage 
of the parent population. The above gating strategy was designed based on the 
following considerations: (1) high CD38 expression was a common feature among 
the predictive CD20+ B cell populations from ref. 12. (2) CD10-based gates were 
included because CD10 was expressed in one of the original predictive populations 
(ID91; Fig. 6 and Table S2 in ref. 12), and these gates would also allow us to evaluate 
prediction performance with or without the inclusion of CD10 gates (Fig. 1b and 
Extended Data Fig. 1a). Note that delineating CD10+ versus CD10− cells in healthy 
individuals can be challenging41, so we were cautious in our interpretation of 
the CD10+/CD10− fractions and focused solely on evaluating relative prediction 
performance with or without the inclusion of our CD10 gates in CD20+CD38++ 
cells (Fig. 1b and Extended Data Fig. 1a).

Quality control. Based on visual evaluation during gating, specifically taking into 
account: (1) low cell viability (<70%); (2) the extremely small number of cells 
expressing high levels of CD38 (less than 5 cells in the CD38++ gate); (3) non-
discernable B cell populations (visually indistinct CD19+ population in CD45+ 
cells), we excluded 8 baseline samples (out of 78 baseline samples that had titre 
data published in ref. 12 and were either high or low responders based on adjMFC—
only high/low responders were used in the subsequent analyses described below, 
although middle responders were also used to assess robustness (Extended Data 
Fig. 3); here, again, baseline was defined as days 0, −7 and 70. Note that subject 262 
(all three baseline time points) was not used in subsequent analysis because they 
were at first erroneously labelled as an intermediate responder, but during final 
quality checks they were identified as a high responder. In general, we followed the 
above cutoffs to remove samples, except that we also removed the day 70 sample 
of subject 250 (viability 78.1% and 20 counts of CD38++ cells) because the percent 
of CD38++ cells was much lower than day 0 (0.63% versus 3.38%). After quality 
control, we have the following number of samples for subsequent analyses:

Low responders High responders

Baseline 1 (day 0) 11 12
Baseline 2 (day −7) 11 12

Baseline 3 (day 70) 10 11

Selection of CD19+CD20+CD38++ population (CBSig). The predictive power of 
each of the four newly gated cell subsets (Fig. 1b and Extended Data Fig. 1a) were 
evaluated by AUC (see ‘Performance assessment of model predictions’). Of the four 
cell populations, population no. 2 (CD38++ of CD20+ B cells) had the highest AUC 
(Fig. 1b) and was selected as the population of interest (CBSig, red box). Note that 

the addition of CD10 in the gating scheme (CD10+CD38++ versus CD10−CD38++) 
led to lower AUCs compared to CBSig, but the CD10+ and the CD10− subsets had 
similar predictive performance, indicating that CD10 status was not important  
for prediction (Fig. 1b). Variations of this gating scheme, such as lowering the 
CD38 expression level requirement or using CD10 to restrict to transitional or 
non-transitional subsets, did not result in better prediction performance  
(Fig. 1b), suggesting that CD19+CD20+CD38++ cells were indeed a core  
predictive population.

Construction of a ten-gene signature (TGSig). Microarray data processing. 
To develop a gene-based surrogate predictive signature of CBSig, we used the 
same influenza vaccination dataset from our previous study (the NIH Center for 
Human Immunology (NIH/CHI) dataset) in which gene expression data was also 
generated from the same PBMC samples assessed by flow cytometry12. The raw 
gene expression data are available in GEO (GSE47353); the processed data are 
available on our data portal (https://chi.niaid.nih.gov). The expression data was 
RMA-normalized and batch-corrected as described in the ‘Extended experimental 
procedures’ section (‘Low‐level microarray data processing’ section) in ref. 12. 
Briefly we found that the hybridization date (batch) of array was significantly 
correlated with most probe sets, and we removed this effect using linear regression 
for each probe set individually. For this purpose, for the i-th probe set we fitted 
the model (i-th probe set intensity) ∼ (hybridization date), and only retained the 
residuals from this fit.

Assessing temporal stability. To derive a surrogate gene signature, we looked 
for genes that: (1) correlated with the frequency of CD20+CD38++ B cells prior 
to vaccination (day 0); (2) have low within-subject variation across the three 
baseline time points (so that it is temporally stable); and (3) have high ISV to help 
potentially delineate differences in responsiveness.

Here we have a data vector X = {xij} (individual, i; time point, j), where each 
xij is associated with a subject and each subject has three measurements obtained 
from each of the baseline time points. We then fitted a one-way ANOVA model (in 
R notation: X ∼ subject) to evaluate the total variance (total sum of squares) and 
partitioned the total sum of squares into components attributable to subject-to-
subject variation and the rest as the fitted residual.

SStotal ¼ SSsubject þ SSresidual

SSsubject is the sum of squares of differences between the subject mean and the 
overall mean. SSresidual is the remaining sum of squares. Here we assumed that the 
variance explained by SSsubject provides an estimate of subject-to-subject differences 
whereas the variance explained by the residual of this fit (SSresidual) provides 
an estimate of the sum of within-subject variation and other sources of noise, 
including technical noise. We then used this relationship:

1 ¼ SSsubject
SStotal

þ SSresidual
SStotal

to evaluate the fraction of variance explained by subject (SSsubject/SStotal; ISV) 
relative to the fraction explained by the residual of the fit (SSresidual/SStotal). We 
defined (SSsubject/SStotal; ISV) as the ‘stability score’, or the temporal stability metric 
(TSM), insofar as high ISV would indicate low residual variance and thus higher 
temporal stability within subjects over time. Quality controlled expression data 
from all three baseline time points were used in this analysis (see workflow below 
and ref. 12 for quality control procedures.)

Selection and evaluation of signature genes. We selected a total of 726 genes with 
TSM ≥ 0.75 for correlation analysis. Using only data from the high and low 
responders with both day 0 flow cytometry (see above) and gene expression data 
passing quality control in the NIH/CHI dataset (22 day 0 samples in total), we 
correlated these 726 genes against the frequency of CD20+CD38++ cells using 
day 0 data. To mitigate influence from outlier subjects and account for sampling 
noise, we used multiple iterations of subsampling of the cohort to derive a ‘robust’ 
measure of correlation as follows: in each iteration, we excluded two subjects and 
then calculated the Spearman correlation between each gene and the cell frequency. 
We performed a total of 231 iterations (the number of subject combinations to 
exclude 2 out of the 22 subjects). For each gene, the ‘robust correlation’ is defined 
as the average correlation divided by its standard deviation across all iterations. 
Genes were ranked according to this robust correlation statistic, which considers 
both the magnude of the correlation and sampling noise. Top genes from the list 
can be found in Supplementary Table 1 together with additional information, 
including the mean, standard deviation and the percent of iterations in which the 
gene was ranked among the top 20.

To determine the number of top genes to construct the surrogate signature, we 
compared AUCs generated from top k genes (k = 1, 2, 3, …., 30) (see ‘Gene-based 
signature score calculation’) for the three baseline time points (Extended Data  
Fig. 2c). We empirically chose k (k = 10, TGSig) so that the AUC was maximized in 
all three time points while including a sufficient number of genes so that when we 
evaluate the signature in other datasets with different profiling platforms we can 
retain a reasonable number of these genes. In addition, we checked how exclusion 
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of any single gene from the signatures affects prediction performance (Extended 
Data Fig. 2g).

To estimate the null distribution of prediction performance, we generated 
a set of 500 ‘random signatures’—top 10 genes based on the same ranking 
and evaluation scheme described above, except that the gene–cell population 
correlations were calculated using subject-label permuted data without applying 
the temporal stability filters. We used these ‘random signatures’ generated for 
each dataset to evaluate whether the prediction performance of our signature is 
significantly higher than that expected by chance (Extended Data Fig. 2e).

Finally, we also checked that our signature genes retained their relative rank 
even if we relaxed the stability (TSM) threshold. Because the total number of 
‘temporally stable’ genes is dependent on the stability threshold, instead of using 
absolute ranks we normalized the ranks of signature genes by the total number of 
genes passing the stability threshold (Extended Data Fig. 2f). The ranking of the 
top genes is relatively stable across TSM thresholds of ≥0.75, although additional 
random noise dominates when the TSM threshold exceeds 0.75 because the 
number of genes became small (Extended Data Fig. 2f).

Gene set-based signature score calculation. Given a set of signature genes (for 
example, TGSig) and a dataset (for example, Yale 2011), we calculated the signature 
scores for each dataset independently. Due to profiling platform differences, some 
genes in a signature were not present in a given dataset and those genes were not 
used in the signature score computation. We used a z score transformation to 
standardize the expression of each gene to have mean 0 and standard deviation 1  
across all the samples in the dataset. This step was carried out to ensure that 
expression values of different genes were on the same scale and thus comparable. 
The signature score of a sample was then calculated by averaging the standardized 
expression value of the signature genes (Extended Data Fig. 2d).

Evaluation of TGSig in non-CHI vaccination datasets. Dataset selection and 
data preparation. We obtained influenza vaccination datasets from a recent meta-
analysis of transcriptomic signatures of influenza vaccination conducted by the 
Human Immunology Project Consortium and CHI10. These data were derived 
from PBMC (SDY400 and SDY404) or whole blood (SDY212) (Supplementary 
Table 2). We downloaded the pre-processed expression data from ImmuneSpace 
(http://immunespace.org) using the ImmuneSpaceR Bioconductor package42. These 
studies are also available on ImmPort (http://immport.org43) under study IDs 
SDY212 (Stanford University, season 2008–2009), SDY400 (Yale University, season 
2012–2013) and SDY404 (Yale University, season 2011–2012). See also the ‘Life 
Sciences Reporting Summary’ accompanying this paper.

The influenza vaccination dataset previously published18 (Emory; seasons 
2008–2011) was downloaded from GEO (GSE29619 and GSE74817). The 
demographics and HAI titre data were received via private communication. Season 
2007 was excluded from the analysis due to the small number (n = 9) of subjects. 
The downloaded data (matrix data (probeset × sample) from GEO) was already 
pre-processed (including normalization and log-transformation), and we thus used 
it unaltered in our analysis. We also conducted the same analyses by starting from 
the raw CEL files (using the same procedure as described below for yellow fever) 
and the results were similar to Extended Data Fig. 3c (data not shown.) We also 
tested defining high and low responders using the same method as reported in the 
original publication18 and the results were again similar in that the high and low 
responders were not separable statistically (data not shown).

The yellow fever vaccination dataset19 was downloaded from GEO (GSE13486). 
Since the pre-processed data was not available, we downloaded the CEL files  
and performed background correction and normalization of the expression  
data with RMA algorithm implemented in Affymetrix Power Tools (APT)  
version 1.18.1 (ThermoFisher).

The systemic lupus erythematosus (SLE) dataset13 was downloaded from 
the webSLE data portal (http://websle.com) as an RData file, which contained 
ExpressionSet objects with pre-processed and pre-filtered expression data together 
with probe annotation and sample information.

For expression datasets containing only probe level information, we 
summarized probe level expression into gene level data as follows: (1) we retained 
only probes that were unambiguously mapped to a single gene; (2) in the case 
where multiple probes were mapped to the same gene, we performed principal 
component analysis of the probes using all samples in the dataset, and then 
selected the probe maximally correlated with the first principal component as the 
reporter for the expression of the gene.

All expression data were RMA normalized and log2-tranformed before 
analysis, except for the SLE data where we used the pre-processed data directly 
(which included log2-transformation.)

Note that for the NIH/CHI dataset, TGSig was computed only for subjects with 
both quality controlled gene expression and titre data (see workflow below.)

Identification of high and low responders. High and low responder determination 
was performed before and independent of any predictive signature assessment. We 
used the adjMFC metric to quantify the antibody response to influenza vaccination 
independent of the initial/baseline titre12,10). While there were differences in how 
antibody titre data were generated across different datasets/studies (for example, 
the NIH/CHI dataset used microneutralization assays, while others used the 

haemagglutination inhibition (HAI) assay), adjMFC only reflects the normalized, 
relative response within a dataset/cohort, but not the absolute magnitude (see ref. 12)  
and is thus applicable to all datasets to quantify the relative response (high versus 
low responders) within each dataset. The detailed methodology can be found in 
the ‘Extended Experimental Procedures’ and ‘Titre definitions’ sections in ref. 12).

For each of the influenza vaccination datasets, we classified subjects into  
high and low responders according to their adjMFC values, and use these  
response class labels in subsequent analyses (see refs. 12,10 for the rationale behind 
focusing only on high and low responders). Briefly, subjects who were below  
the 30th percentile or above the 70th percentile adjMFC values in a dataset  
were classified as low and high responders, respectively. Following previous 
HIPC-CHI analyses, these thresholds were selected to allow enough high and  
low responders for analysis. This cutoff differs from that used in the original 
NIH/CHI influenza study, in which the subjects were discretized to low and  
high responders using the 20th and 80th percentile adjMFC values as cutoffs,  
respectively (see Methods in ref. 12). To be consistent with the original NIH/CHI  
influenza study, we kept the same 20/80 cutoffs for defining high and low 
responders when analyzing the NIH/CHI dataset here. These cutoffs were all 
pre-determined before analyses started.

For the yellow fever vaccination dataset, neutralization titres against the yellow 
fever virus (YFV) measured on day 60 were used as the antibody response to 
vaccination because all subjects were naive to the YFV at baseline. We discretized 
the original titre values within each of two reported trials. The thresholds to 
identify high and low responders were selected based on the distribution of titre 
values within each trial. Because the neutralizing titres were measured using 
different techniques (by cytopathic effect (CPE) for trial 1 and by plaque reduction 
neutralization test (PRNT) for trial 2), the exact thresholds we used were different. 
For trial one, six subjects were classified as low responders (titre < 160), and six as 
high responders (titre > 160), while for trial two there were three low responders 
(titre < 640) and four high responders (titre > 640). Titre values of 160 and 640 
were considered ‘middle responders’ in each trial, respectively, and were excluded 
from analysis.

Predictive performance assessment. To assess whether TGSig was predictive of 
high versus low responders, we computed the AUC (area under the empirical 
receiver operating characteristic (ROC) curve). A permutation procedure was 
used for estimating one-tailed P values—see below for further details. We also 
used the one-tailed Wilcoxon Rank Sum test to assess whether the signature 
score was significantly higher in high compared to low responders, which also 
provided another measure of statistical significance in addition to that computed 
for the AUC. We used a one-tailed test because we knew a priori that CBSig (and 
the original predictive populations from ref. 12 from which CBSig was derived) 
had higher frequencies in high than in low responders. Thus, we specifically test 
whether TGSig (a surrogate of CBSig) was significantly higher in high than low 
responders. All statistical analyses were performed using R/Bioconductor. ROC 
curves were computed with the ‘pROC’ package44.

Assessing TGSig in independent vaccination datasets. After selecting signature genes 
for TGSig using only the day 0 data of the CHI influenza dataset, we computed 
the TGSig signatures scores for each subject prior to vaccination in each of the 
influenza vaccination datasets (Stanford, Yale and Emory) and the yellow fever 
vaccination dataset, and evaluated the predictive performance of delineating high 
versus low responders. The influenza datasets all had bi-modal age distributions 
(young, age < 35 years; older, age > 60 years) because they were originally designed 
to assess responses in older versus younger individuals10; we thus focused on 
testing TGSig in young subjects only because the CHI dataset consisted of largely 
younger individuals. We did evaluate TGSig in older subjects and found that it was 
not predictive of high versus low responders in those older than 60. For the Emory 
dataset, a higher cutoff for ‘young’ (age < 60 years) was employed because using a 
cutoff of 35 would result in a very small dataset, but we also tested using 35 as the 
cutoff and the results were similar. The yellow fever dataset contains two trials with 
the first having a larger sample size than the second, and we tested the signature in 
each trial independently.

Additional statistics for assessing prediction of high versus low responders can 
be found in Supplementary Table 2b.

Application of TGSig to a paediatric SLE cohort. See also the ‘Life Sciences 
Reporting Summary’ accompanying this paper. In the SLE study, each patient had 
multiple samples (visits) collected over time, each of which may be collected when 
the patient had different levels of disease activity as reflected by the SLEDAI score. 
The original publication13 defined seven groups of patients based on SLEDAI-
associated gene expression patterns (correlation computed over time/multiple 
visits), and showed that for patient groups 2, 3 and 4, the SLEDAI score was 
correlated with genes associated with a plasma cell/plasmablast signature.

For reasons discussed in the main text, we focused on patients from groups 2, 
3 and 4 and evaluated whether TGSig evaluated at low disease activity time points 
was correlated with the changes in plasmablast signature score associated with 
disease activity (for example, the extent of plasmablast score increase between low 
and high disease activity time points). Note that we used a mixed effect model to 
estimate this latter quantity (see below for details). For each patient in groups 2, 
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3 and 4, we calculated a plasmablast signature score for each visit (using the gene 
module DC.M4.11 as described below in ‘Plasmablast gene signature’). Because 
each patient had multiple visits and patients often had treatment (for example, 
corticosteroids) that, in turn, may have an effect on the changes in plasmablast 
score as a function of disease activity, we used a linear mixed effect model to 
integrate the data45 (in R/lme4 notation): PB ~ ∑Ti+SLEDAI|SUBJECT, where 
PB is the signature score, Ti is an indicator of treatment group (as defined in the 
original paper), SLEDAI is treated as a continuous variable, and subject is treated 
as the random effect. Here the subject-dependent, ‘random’ coefficient for the 
SLEDAI term (the ‘slope’) would give us an estimate on the quantitative extent 
by which the plasmablast signature score would change as disease activity varies. 
Note that the plasmablast signature score is presumably reflective of plasmablast 
frequencies, as shown previously12. We fitted the mixed effect model and extracted 
the aforementioned personal ‘slope’ by using the ‘ranef ’ function; hereon we will 
refer to this patient-specific quantity as the ‘disease activity-associated change in 
plasmablasts (DaCP)’. We also tested treating SLEDAI as a discrete/categorical 
variable (high and low disease activity only, or high, middle and low disease 
activity—see below for definition) and the resulting estimate for the personal 
DaCP was similar to that obtained by treating SLEDAI as a continuous variable 
(data not shown). We further assessed the robustness of DaCP by comparing it to 
the simple difference between the average plasmablast score of high disease activity 
time points and that of low disease activity time points (Extended Data Fig. 5b), 
and as expected they were highly correlated.

To compute TGSig from clinically quiescent or ‘baseline’ low disease activity 
time points, we adopted the original SLE study’s classification of samples into 
low, middle and high disease activity groups based on the SLEDAI score (low, 
SLEDAI < 3; medium, SLEDAI = 3–7; high, SLEDAI ≥ 8). We then calculated the 
TGSig score at low disease activity time points. Because each subject may have 
more than one sample from a low disease activity time point, subject-specific 
scores were computed by averaging the score from all low disease activity time 
points. We then tested whether the TGSig signature score calculated at low disease 
activity time points was correlated with DaCP. As a control, we performed the 
same analysis described above in patient groups 1, 5, 6 and 7 to assess if such 
a correlation exists for patients whose disease activity did not correlate with 
plasmablast scores.

Plasmablast gene signature. We chose the gene set DC.M4.11 ‘Plasma cells’ 
from the Chaussabel BTMs to compute the plasmablast signature score46 because: 
(1) this was one of the plasma cell/plasmablast gene signatures that the original 
SLE study found to be correlated with disease activity (that is, which helped 
define patient groups 2, 3 and 4); (2) we examined the within-module gene–gene 
correlation in this and additional plasmablast related gene modules (see below) and 
found that this gene set had the best coherency and exhibited the highest overall 
gene–gene correlations; and (3) the score of DC.M4.11 was significantly correlated 
with the score computed from a gene set we derived earlier based on correlation 
with changes in plasmablast frequency on day 7 following influenza vaccination 
(see Fig. 7B in ref. 12) (data not shown), thus suggesting that the signature score 
computed from DC.M4.11 was directly reflective of plasmablast frequencies.

From ref. 46

DC.M4.11 Plasma cells
DC.M7.7 Undetermined
DC.M7.32 Undetermined
From ref. 21

LI.M156.0 Plasma cells and B cells, immunoglobulins

LI.M156.1 Plasma cells, immunoglobulins

Computing gene set enrichment scores for transcriptional differences between 
high and low disease activity periods. For each gene and patient, we first 
computed the average gene expression for samples with high disease activity  
(or middle disease activity if no samples with high disease activity were available) 
and separately for those with low disease activity. Then for each subject the genes 
were ranked by the magnitude of the difference between these two average values 
(high disease activity—low disease activity), followed by gene set enrichment 
analysis using the CERNO test from the ‘tmod’47 R package to generate the 
enrichment statistics for each subject and gene set. The enrichment for each gene 
set in each subject is shown as −log10 of the FDR-adjusted P value in the heatmap 
of Extended Data Fig. 5a. To summarize the information in this heatmap and  
show patient group dependent enrichment, we averaged the enrichment values 
across each patient group and gene sets with similar phenotypic annotations  
(as determined previously in the original publication13) and generated the 
compressed heatmap of Fig. 2c.

Identification and characterization of co-expression modules at low disease 
activity time points. To identify co-expression modules in SLE patients, we first 
calculated the average expression profile for each patient using samples from low 
disease activity time points. We focused also on temporally stable genes (across 

low disease activity time points) because those are more likely to reflect stable, 
personal immune states. We estimated the TSM score for each gene across low 
disease activity time points using a similar approach as described above for the 
development of TGSig in the NIH/CHI influenza dataset, except that stable 
genes were selected using a more relaxed cutoff, that is, using a FDR cutoff of 
0.05 (calculated from the P values of the F statistics of the ANOVA model above), 
which resulted in 9,601 ‘stable’ genes, because we wanted to retain more genes for 
module analysis. We next used the WGCNA algorithm to determine modules20. We 
determined the algorithm’s hyperparameters following the authors’ recommended 
procedure, setting soft power to 4 (the lowest power for which the scale-free 
topology fit index curve flattens out upon reaching a high value; in this case, 
roughly 0.80), and network type to ‘signed hybrid’. We were able to assign ~2,800 
genes to 18 co-expression modules (Supplementary Table 3), with module size 
ranging from 25 to 719 genes (Fig. 3a and Supplementary Fig. 1a).

To assess the extent by which these modules were associated with the DaCP, 
we calculated the Pearson correlation between the eigengene of each module 
(that is, PC1) and the DaCP. To evaluate statistical significance, we generated an 
empirical null distribution for each module by randomly shuffling subject labels 
and recalculating correlations on the shuffled data (Supplementary Fig. 1b). 
Empirical P values were determined by comparing the actual correlations with the 
corresponding null distributions.

For functional characterization, we evaluated whether the modules are 
enriched for known gene sets (such as the BTMs21, Supplementary Fig. 1c) with the 
hypergeometric test. The false discovery rate was controlled using the Benjamini–
Hochberg procedure48.

Meta-analysis to identify genes associated with vaccine responses. We used 
random effect meta-analysis models49 to estimate the ‘meta’ effect size of each gene 
by combining expression and antibody response data from multiple vaccination 
datasets. This method models the observed effect size yi (association between 
expression and vaccine response class as reflected by adjMFC high versus low 
responders for each study i) as a draw from a distribution with study-specific mean 
θi and variance s2i

I
 (that is, intra-study sampling error). Furthermore, each θi is 

assumed to be a draw from a distribution with overall mean μ and variance τ2  
(that is, inter-study variability):

yi ¼ θi þ εi; εi  N 0; s2i
� �

θi ¼ μþ δi; δi  N 0; τ2
� �

We identified influenza response genes by applying the method to the four 
influenza vaccination studies (Supplementary Table 4a). We only evaluated the 
temporally stable genes as defined above based on the low disease activity time 
points because those were the genes we used to define co-expression modules. In 
addition, we applied the same method to the two trials of yellow fever vaccine. We 
found that the meta-analysis results are largely consistent with the first trial, but 
much less so with the second trial (data not shown). The relatively poor coherence 
between the two trials may be partly due to the very small sample size of the 
second trial (only 7 subjects). Our observation suggested that inclusion of data 
from trial two is more likely to introduce noise than signal, thus we decided to only 
focus on trial one.

Gene set enrichment analysis. Gene set enrichment analysis (GSEA) is a widely 
used approach to test if a particular gene set is enriched at the top of a ranked gene 
list50. Because the datasets we used are from peripheral blood samples, we decided 
to use known gene sets from the same tissue: the BTMs21. These gene modules 
were identified from network analysis of gene–gene correlations in multiple blood 
transcriptomic datasets. We used an efficient implementation of GSEA analysis 
from the ‘fgsea’ R package40 with the BTM modules from the ‘tmod’ R package47 
(‘fgsea’ was used also to extract leading edge genes.)

We applied GSEA to assess whether the genes in the ‘brown’ co-expression 
module identified in the SLE cohort are enriched at the top of the genes ranked  
by their meta-effect/association with antibody response to influenza vaccination 
(Fig. 3d); we also performed the same analysis for yellow fever trial one (see above) 
but the result was statistically insignificant.

To test for enrichment of BTMs in genes from the NIH/CHI influenza 
dataset ranked by correlation with CD20+CD38++ B cell frequency, we selected 
temporally stable genes with TSM ≥ 0.5 from the NIH/CHI influenza study dataset, 
and ranked them by their robust correlation metric (see ‘Baseline gene-based 
predictive signature’ above). Here a more relaxed temporal stability cutoff was 
used to increase the number of genes and statistical power for enrichment analysis. 
P values from the enrichment test were corrected for multiple‐testing using the 
Benjamini–Hochberg method48.

GSEA was also applied to identify ‘leading edge’ genes, a subset of the query 
set that maximizes the enrichment score. Applying leading edge analysis to brown 
module and the genes from the NIH influenza study ranked by correlation with 
CD20+CD38++ B cell frequency, we identified a set (87 genes) of leading edge genes 
in the brown module (and called this gene set SLE-Sig) (Fig. 3e and Supplementary 
Table 5). To better understand the predictive property of genes in the brown 
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module, we divided it into two subsets—the leading-edge set (87 genes—SLE-Sig), 
and the remaining genes. For each subset, we calculated the eigengene and used it 
in regression analysis (Extended Data Fig. 6).

Assessing the relative contribution of TGSig and SLE-Sig to predicting 
vaccination responses. We used logistic regression to model association with 
vaccine response (high vs. low responder based on adjMFC) by pooling all four 
influenza vaccination datasets (Extended Data Fig. 6). We fitted three models, 
all having the following form (high responder: response = 1; low responder: 
response = 0):

Pr response ¼ 1ð Þ ¼ X  β þ ε

where X is a matrix of covariates, and β is a vector of coefficients estimated from 
the data. Model 1 includes both TGSig and SLE-Sig (represented by the eigengene 
or PC1 of genes in the respective set) as covariates, while models 2 and 3 only 
include one of the two covariates. In addition, all three models include dataset ID 
(encoded by dummy variables) as a covariate. To assess statistical significance, we 
performed the likelihood ratio test comparing two nested models (for example, 
model 1 and model 2).

The same approach was used to evaluate the relative contribution of TGSig 
and: (1) genes outside the leading edge in brown module; (2) IFN-I-DCact genes. 
Similarly, instead of evaluating vaccine responses, we applied this same approach 
to evaluate the relative contribution of TGSig and these other gene signatures in 
predicting DaCP in SLE.

Sorting of B cell populations from healthy donors. Peripheral blood 
mononuclear cells (PBMCs) were obtained from peripheral blood of six healthy 
individuals by density-gradient centrifugation and cryopreserved until day of 
B cell analysis and sorting. Multicolor flow cytometry was performed to identify 
PBMC B cell populations (Extended Data Fig. 7a) using the following mAbs: 
CD19-PerCP-Cy5.5, CD27-PE-Cy7 (ThermoFisher); CD20-APC-H7, CD38-
BV421 (BD Biosciences); CD3-BV510 (Biolegend). For transcriptional analysis, 
total CD19+CD20+ and CD19+CD20+CD38hi B cells (5,000 each) were sorted into 
Trizol LS (Sigma) or ATACseq buffer using a FACSAria II (BD Biosciences). Flow 
data analyses were performed using FlowJo software (TreeStar/Becton Dickinson, 
Ashland, OR). Purity of B cell sorts was ~99%.

Donor demographic information is available in Supplementary Table 9. See 
also the ‘Life Sciences Reporting Summary’. Healthy donors were recruited under 
NIH IRB approved protocol NCT00001281. Informed consent was obtained from 
all study participants.

RNA-seq library preparation and analysis. RNA was isolated from cells sorted 
into Trizol LS using the Zymo Direct-zol Micro-prep columns (Zymo Research, 
Irvine, California). Total RNA sequencing libraries were prepared using the 
NuGEN SoLo RNA-seq library kit (NuGEN Technologies, San Carlos, California) 
according to the manufacturer’s instructions, using 1 ng of RNA as input. Libraries 
were sequenced using the Illumina NextSeq with version 2 sequencing reagents 
to an average of 20 million paired-end 37 base pair length reads per sample. 
Fastq files were generated from raw sequencing data using ‘bcl2fastq’ version 
2.17.1.14 (Illumina). Reads were mapped using STAR51 version 2.5.2 aligner and 
the UCSC hg19 genome annotation and the —quantMode GeneCounts option. 
Counts-per-feature data output from STAR was imported into R 3.4.1. The average 
number of exonic-feature mapped counts was 3.14 million per sample. Differential 
gene expression was estimated using the ‘DESeq2’ package52. MAplot shown in 
Extended Data Fig. 7b was produced using ‘ggplot2’53 version 2.2.1 (https://cran.r-
project.org/web/packages/ggplot2/index.html).

Statistical evaluations. All statistical analyses were performed in R version 3.4.1, 
except for the low-level processing of single-cell data and some of the analyses 
in CITE-seq and RNA-seq (for example, Extended Data Figs. 7–9), which were 
performed using R 3.6.1. Effect sizes and P values of Pearson and Spearman 
correlations were computed using the cor.test function. P values for Wilcoxon 
Rank Sum Test were computed using the ‘wilcox.test’ function. Unless noted, all 
Wilcoxon tests were two-tailed. Hedges’ g effect sizes were computed using the 
‘cohen.d’ function in the ‘effsize’54 package. Meta-analysis was performed with the 
‘MetaDE’55 package. Enrichment analysis was performed using the ‘fgsea’40 package 
in Bioconductor (when we want to extract leading edge genes; the similar CERNO 
test was used when leading edge genes are not needed, for example, Fig. 2c and 
Extended Data Fig. 5a) Jonckheere-Terpstra trend test for ordered differences 
among multiple classes was performed using the ‘jonckheere.test’ function in the 
‘clinfun’ package56. Area under ROC curve (AUC) and 95% confidential interval 
were computed using the ‘pROC’ package44. The P value for AUCs was estimated 
by a permutation procedure: we shuffled the subject labels to create a mismatch 
between the responder class and the gene expression data and generated 1,000 
permutations test the null hypothesis that the observed AUC was drawn from this 
null distribution. Metrics to further assess prediction performance (Supplementary 
Table 2b) were computed using the ‘MLmetrics’ package57. Some metrics required a 
cutoff for calling high vs. low responders: (1) for gene expression based predictors 
we used zero since we used scaled (z-score based) gene expression values to 

compute the score of a gene set for each subject; (2) for cell frequency based 
predictors the cutoff was set to the median of cell frequencies.

Simultaneous protein and transcriptomic single cell profiling via CITE-seq. 
Combined surface target protein and mRNA expression single cell analysis was 
performed using the CITE-seq methodology according to refs. 16,58,59 with the 
following modifications: n = 20 high and low responders were split between two 
experimental batches with n = 5 high and n = 5 low responders in each batch. See 
also the ‘Life Sciences Reporting Summary’. The high and low responder groups 
were not significantly different in age and sex (P = 0.16 for age and P = 0.37 for sex, 
Wilcoxon two-tailed test). In each batch, samples were stained using cell ‘hashing’58 
antibodies such that samples could be demultiplexed using a combination 
cell hashing identifiers and SNP genotype demultiplexing60. After cell hashing 
antibody staining, cells from each batch were pooled into one tube and stained 
with a mixture of oligo-labelled antibodies against target surface proteins. The 
two experimental batches were performed on consecutive days, using aliquots of 
the same pool of antibodies for each batch. Final antibody concentrations used 
for staining were determined using titration experiments; the concentration 
of antibody that appeared to saturate ligand was utilized, or for cases in which 
apparent saturation was not reached, the manufacturer’s recommended amount 
was used. Oligo-labelled antibodies for cell hashing and surface target protein 
detection were obtained from Biolegend (see Supplementary Table 10 for list of 
reagents). The same pool of donor cells from each batch were distributed evenly 
across 6 lanes of 10x Genomics Single Cell 3’ expression reagents (version 2). Cell 
hashing (HTO) and surface target protein (ADT) libraries were prepared according 
to16,58,59. cDNA tag libraries were prepared using the 10x Genomics v2 kit according 
to manufacturer’s instructions. Libraries were sequenced using the Illumina HiSeq 
2500 and v4 reagents. Additional statistics: mean number of gene detected per cell 
was 746, mean number of unique molecular identifiers (UMI) per cell was 2139. 
The mean read depth per cell was approximately 43,000–84,000 as reported by 
CellRanger. The fraction of reads mapped to the genome was above 90% for all 
lanes; sequencing saturation was typically around 90%.

Computational low-level processing of CITE-seq data. Bcl2fastq version 2.20 
(Illumina) was used to demultiplex the sequencing data. CellRanger version 3.0.1 
(10x Genomics) was used for alignment (using the Hg19 annotation file provided 
by 10x Genomics) and counting UMIs. CITE-seq ADT and HTO tag alignment 
and UMI counting was done with CITE-seqCount61 version 1.4.2. The following 
computational analysis of CITE-seq data was performed using the Seurat 2.3.4 R 
package23 and the SingleCellExperiment Bioconductor class62. Hashing antibodies 
were used to identify the response class (high vs. low adjMFC) in each batch. 
Samples demultiplexed with Seurat’s HTODemux k-means function corresponded 
to either one or two possible sample identities. Sample labels were then assigned 
to each cell using demuxlet60; only cells that met the following conditions were 
retained: 1) the cell must be defined as a ‘singlet’ by both hash demultiplexing and 
demuxlet; 2) the identified donor from demuxlet must match either of the two 
expected donors based on HTO hashing.

Surface protein data normalization and denoising. We used DSB (Denoised and 
Scaled by Background), a method we developed for CITE-seq protein data 
denoising and normalization63. Briefly, for each protein, ADT data was normalized 
by taking the log+1 of raw counts, then subtracting the mean and divided by the 
standard deviation of the corresponding antibody count from the same batch 
measured in negative droplets. In addition, to account for droplet-to-droplet 
differences in the ADT capture rate as well as background noise from unbound 
antibody, we denoised each cell by removing a covariate corresponding to the 
background counts for each cell using the removeBatchEffect function in limma64 
package; this covariate was defined for each cell as the eigenvector of: 1) the mean 
of non-staining antibodies in that cell; 2) counts from 4 isotype control antibodies. 
mRNA data was normalized with scran65 after removing cells with greater or less 
than 3 median absolute deviations from the median library size.

Cell clustering and annotation. The cell clusters were identified by a shared 
nearest neighbour (SNN) modularity optimization based clustering algorithm66 
implemented in the ‘Seurat’ R package23. Only ADT data (surface protein 
expression) were used to generate the Euclidean distance matrix computed for 
all single cells. The matrix was then used to build the SNN graph followed by k-
nearest neighbours clustering (k = 50). Three clustering resolutions were applied, 
0.1, 0.3 and 1, to generate three sets of cell clusters; the relationship between these 
cluster sets were visualized using the ‘clustree’67 and ‘ggraph’68 R packages (Fig. 4b). 
The clusters were labelled accordingly to reflect this hierarchical relationship (for 
example C1→C1.0→C1.0.0). We annotated the protein-based clusters post hoc, 
linking them to canonical immune cell populations by visualizing both the average 
and distribution of all proteins in each cluster at multiple resolutions (Fig. 4c).

Single cell tSNE visualization. tSNE (t-distributed stochastic neighbour 
embedding) analysis was performed using ADT (surface protein expression) data 
only with the ‘RunTSNE’ function from the ‘Seurat’ package. Note that tSNE was 
used only for visualization. We used PCA for dimensionality reduction: the number 
of dimensions (7) used for tSNE was determined with the ‘elbow’ plot (not shown). 
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In the tSNE plot (Fig. 4a), the 10 clusters resulted from the resolution = 0.1 clustering 
above (with the perplexity parameter equal to 130) were shown.

Manual gating of CITE-seq data. To determine frequency of the 
CD19+CD20+CD38++ B cell population for each subject, we first gated the total  
B cells in the dataset as CD3−CD56−CD14−CD19+. The gates were determined based 
on the density plot of each marker. We then applied the CD20+CD38++ gate to total 
B cells. After we determined the cells in the gate, we used subject labels to compute 
the number of total B cells and CD20+CD38++ B cells for each subject, and then the 
frequency of CD20+CD38++ B cells as a fraction of the total number of cells.

Computing and evaluating subject-level gene set signature scores for cell 
clusters using CITE-seq data. Our goal was to assess, using only cells in a 
given cell cluster, whether the average (across single cells) relative expression of 
genes in a signature gene set is higher in the high responders compared to low 
responders. The procedure we devised below was used in two related situations: 
(1) given a bulk predictive signature (for example, TGSig), determine whether 
average relative expression of genes in the signature is significantly higher 
within a specific cluster of cells in high than low responders—this was used to 
uncover the cellular contributors to a bulk predictive signature such as TGSig; 
and (2) given a gene signature that reflects a cell state (for example, CD40act), 
assess whether a particular cluster of cells tends to have higher average relative 
expression of genes in the signature in high than low responders—when 
interpreting results from this analysis we are often making the assumption 
that higher average relative expression corresponds to a greater strength of 
signal that drove the cells to or kept the cells in that state. Thus, for the latter 
situation, we focused on signatures containing genes with evidence of increased 
expression when exposed to the ‘signal’ (for example, see CD40act below.) This 
assumption is sound because here we focus on genes that respond to signals 
such as CD40L and type I IFN, which lead to activation of transcriptional 
programs that shape the mRNA profile within specific types of cells.

There were two levels of averaging in our procedure: (1) averaging across 
single cells—single cell mRNA expression data can be noisy and since our goal 
here is to evaluate cell clusters, we took advantage of the power of statistical 
averaging to increase robustness and derive conclusions at the cell cluster level; 
(2) averaging across genes—information obtained from individual genes can 
also be noisy and often does not reflect cell states, which are typically more 
robustly captured by the level of multiple genes as a set of genes, for example, 
can be shaped by common upstream regulators. As also demonstrated by 
the success of methods such as GSEA and eigengene analysis, gene set level 
information can be more robust and can better reflect cell state shifts that affect 
multiple genes. Our single cell normalization procedure (see above) and simple 
z-score scaling (see below and ‘Gene set-based signature score calculation’ 
section above) helped to enable such averaging.

To compute the subject-level signature score for a gene set in a given cell 
cluster, we first created a cell-averaged gene expression data set for the cell 
cluster: for a given cell cluster and subject, we averaged the normalized single cell 
expression counts for each gene across single cells in that cell cluster for the subject. 
For each cell cluster (for example, cluster C0, naive CD4+ T cells; see Fig. 4b,c), this 
procedure generated a gene-by-subject expression matrix. We then applied the 
same z-score based procedure as we used for microarray gene expression data (see 
‘Gene set-based signature score calculation’ section above) to compute the gene 
set signature score for each subject. We then used the non-parametric one-tailed 
Wilcoxon test to evaluate whether the signature scores are significantly higher in 
the high responders compared to the low responders.

As a robustness check for results involving the SLE-Sig signature (Fig. 5b), 
which is enriched for type I IFN responses and related processes (Fig. 3c,f), we 
also created another type I IFN gene signature (IFN, see Supplementary Table 6) 
using modules from an independent collection46. This signature was created by 
combining (that is, the union) genes from the following three BTMs46: DC.M1.2, 
DC.M3.4 and DC.M5.12.

Gene signature for CD40 activated B cells (CD40act). Our goal was to 
construct a transcriptional signature that reflects CD40 activation in human 
B cells. We focused on genes with evidence of increased expression following 
CD40L stimulation because we wanted to evaluate whether these genes tended 
to be elevated in B cells in high responders compared to low responders using 
CITE-seq data. The CD40act gene signatures (49 genes) was generated as the 
intersection between two gene sets (Supplementary Table 6). The first gene set 
(163 genes) was obtained by reading off the heatmap in Supplementary Fig. 1 in 
ref. 26, which corresponded to genes/probe sets with higher expression in CD40 
activated B cells in comparison to mock-activated B cells (that is, those that 
appeared red and blue on the right and blue sides of the heatmap, respectively). 
Since the expression data was not available, we transcribed the probe set labels 
directly from the figure. The labels were then converted to probe set IDs 
with Affymetrix annotation and then converted to gene symbols by using the 
hgu95av2.db Bioconductor package69. The second gene set (295 genes) were 
generated by using publicly available expression data from ref. 27. We downloaded 
the data from GEO (GSE54017) and selected genes more highly expressed in 
CD40 activated B cells than in resting B cells. The statistical cutoff was determined 

using a one-sided paired t-test: we selected genes with an FDR-adjusted P value 
lower than 0.05 and a log2-fold-change greater than 1.5.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

data availability
All data used in this study, including CITE-seq and flow data, are available at 
figshare (https://doi.org/10.35092/yhjc.c.4753772). The original/raw public gene 
expression data are available in the National Center for Biotechnology Information 
Gene Expression Omnibus (GEO) under accession numbers: GSE47353, 
GSE41080, GSE59654, GSE59743, GSE29619, GSE74817, GSE13486 and GSE65391 
(see also Supplementary Table 2).

Code availability
The source code and software pipeline to reproduce our analyses can be assessed at 
https://github.com/kotliary/baseline.
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Extended Data Fig. 1 | identification and characterization of the Cd19+Cd20+Cd38++B cell population, a baseline, pre-vaccination cell frequency-
based signature (CBSig) of antibody responses to influenza vaccination. a, Flow cytometric gating strategy for the CD19+CD20+CD38++ B cell 
population. Populations 1–4 are further described in (Fig. 1b). b, Box plots (top) showing the frequency of CD19+CD20+CD38++ cells (CBSig; y axis) at 
the three baseline time points from ref. 12 (days −7 and 0 are prior to vaccination and day 70 is after vaccination) in low and high responders (x axis) to 
the seasonal and pandemic H1N1 influenza vaccines as defined by the Adjusted Maximum Fold Change (adjMFC) metric (see ref. 12). There are 11 low and 
12 high responders for day −7 and 0, and 10 low and 11 high responders for day 70. P values from the Wilcoxon one-tailed test results are shown on the 
box plots (based on results from ref. 12 our hypothesis was that the high responders have higher frequencies of these cells than low responders). Boxplots’ 
center line corresponds to the median value, lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles); lower and 
upper whiskers extend from the box to the smallest or largest value correspondingly, but no further than 1.5x inter-quantile range. (Bottom) Corresponding 
receiver operator curves (ROC) for vaccine response at each of the above baseline time points and their AUC (area under the curve) and corresponding 
permutation-based one-tailed p value are shown. c, Dot plots (CD38 vs. CD10 of CD19+CD20+B cells) for example high and low responders. d, Glossary 
of major abbreviations used in the study.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | derivation of TGSig, a transcriptional surrogate signature for CBSig. a, Step 1: Identification of genes with high temporal stability 
across the three baseline time points (days −7 and 0 are prior to vaccination and day 70 is after vaccination) in the NIH influenza study12. The middle 
box shows the distribution of the temporal stability metric (TSM) across all the genes. The boxes on the right and left show examples of genes with high 
and low temporal stability, respectively; each line corresponds to an individual. Genes with high temporal stability (≥0.75) across the three baseline time 
points (depicted to the right of the red dashed line) were subsequently evaluated for correlation with CD19+CD20+CD38++ B cell frequency. b, Step 
2: 726 temporally stable genes were ranked by their ‘robust’ correlation with CD19+CD20+CD38++ B cell frequency. Robustness is evaluated using all 
231 random samplings of 20 subjects out of the cohort of 22 subjects (that is, two random subjects were dropped out from each sampling); the mean 
Spearman correlation coefficient divided by the standard deviation across the samplings (x axis left panel) was used to rank the genes. Top genes are 
shown together with the predictive performance of each gene evaluated at day 0 (AUC; right panel). The red dashed line in the right panel corresponds 
to AUC=0.50 (prediction performance as expected by chance); the top 10 genes were selected in TGSig (the black dashed line; see Supplementary 
Table 1 for full list of ranked genes) based on (c). c, Performance (AUC; y axis) of the gene signature by baseline time point (different lines) and number 
of top genes included in computing the signature score (x axis). The vertical dashed line corresponds to a gene signature (TGSig) containing the top 10 
genes achieving the best AUC across all three time points. d, Schema for gene signature score calculation. Gene expression data is standardized through 
calculation of Z-scores for each gene (that is, each gene would have mean 0 and standard deviation 1). The Z-scores for each gene in the signature 
are then averaged to generate the gene signature score. e, Distribution of predictive performance (AUC; x axis) of 500 random top-10 gene signatures 
generated from subject-label shuffled gene expression data using the robust correlation metric approach described above. The dashed red line indicates 
the observed AUC of TGSig at each of the baseline time points. One-tailed empirical p-values are shown. f, Relative rank (rank position divided by the total 
number of genes) of the top 20 genes from (b) and Supplementary Table 1 at different TSM thresholds. The black line shows TSM cutoff=0.75, the value 
used in selecting the top 10 genes for inclusion in TGSig (boxed). g, Change in AUC (x axis) of TGSig score following removal of the indicated gene in the 
signature (y axis) at each of the three baseline time points in the NIH influenza study.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Comparison among response classes by including middle responders and evaluating TGSig in the influenza datasets from 
emory18. a, similar to Fig. 1e, f but including middle responders (for day 0 n=11/19/13 for low/middle/high responders, respectively; for day -7 n = 10/22/14 
and for day 70 n = 11/21/12); p values from the Jonckheere trend test (with an a priori alternative hypothesis that the high responders >= middle 
responders >= low responders.) For all box plots the center line corresponds to the median value, lower and upper hinges correspond to the first and third 
quartiles (the 25th and 75th percentiles); lower and upper whiskers extend from the box to the smallest or largest value correspondingly, but no further 
than 1.5x inter-quantile range. b, Similar to (a) but related to Fig. 2a; note that Yale 2012 does not have middle responders based on data retrieved from 
ImmuneSpace (n = 9/10/10 (Stanford 2008), 7/3/6 (Yale 2010), 7/0/8 (Yale 2012)). c, Similar to Fig. 2a but testing TGSig using influenza datasets from 
Emory University over four years (n = 14/8 low/high responders for year 2008, 8/8 for 2009, 11/11 for 2010, 12/10 for 2011). Box plots (top) showing the 
TGSig score (y axis) in low and high responders (x axis) as defined by adjMFC in the indicated season. P values shown on the box plots were obtained 
from the Wilcoxon one-tailed test. (bottom) Corresponding receiver operator curves (ROC) for vaccine response and the AUC (area under the curve) and 
corresponding permutation-based one-tailed p values are shown. d, Similar to (a) but for yellow fever and related to Fig. 2b.
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Extended Data Fig. 4 | Further evaluation of TGSig in yellow fever and influenza datasets. a, (top) Box plots (top) showing the TGSig score applied 
to pre-vaccination PBMC expression data (y axis) between low and high responders (x axis) to yellow fever vaccine in trial #2 (x axis; 4 high vs. 3 low 
responders). (bottom) Corresponding receiver operator curves (ROC) for vaccine response and the AUC (area under the curve) and corresponding  
one-tailed permutation-based p value are shown. This vaccination cohort included 10 subjects (see Fig. 2b for results on a first, larger trial with 15 subjects).  
Boxplots’ center line corresponds to the median value, lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles); 
lower and upper whiskers extend from the box to the smallest or largest value correspondingly, but no further than 1.5x inter-quantile range. P-value is 
from Wilcoxon one-tailed test. b, Forest plot showing the meta-effect sizes (Hedge’s g reflecting correlation strength with adjMFC) of the TGSig genes 
from a meta-analysis of four influenza datasets (Stanford 2008, NIH 2009, Yale 2011, Yale 2012; genes in gray were not present in all datasets); the bars 
represent the 95% CI. c, Similar to (b) but for yellow fever vaccination (computed from trial #1).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | SLe patient phenotypes based on dA-associated transcriptional signatures and assessing the association between TGSig  
(at low dA) and daCP after the removal of patients with lower dA-associated plasmablast signature scores. a, Recreation of Figure 6a from ref. 13 but as 
a robustness check here we used a different method: for each patient we ranked genes based on the difference between their average expression at high/
middle and low DA time points and then performed GSEA analysis using the blood transcriptomic modules (columns) to fingerprint the patient. The colors 
on the heatmap denote the statistical significance (-log10 of BH-adjusted p-values from CERNO39) of the gene set enrichment test. Here we kept the order 
of patients (rows) and modules (columns) the same as in the original heatmap, although some patients from the original heatmap were removed due to 
the absence of low DA time points. The original patient groups were used to annotate the patients (rows). The overall fingerprinting pattern is visually 
highly consistent with the original heatmap. This heatmap/matrix was then used to construct Fig. 2c by averaging individual patient values within each 
patient and phenotype group combination. b, DaCP versus average plasmablast score difference between high (or middle if no high was available) and low 
DA time points in SLE patients from patient groups 2, 3 (in blue, n = 19) or groups 2, 3, and 4 (group 4 in grey, n = 12) from ref. 13 (see patient groups in  
Fig. 2c). Pearson correlation coefficients and two-tailed P values are shown. Spearman rho for groups 2 and 3 is 0.87 (two-tailed p = 2.2 × 10−16); and for 
groups 2, 3 and 4 is 0.85 (two-tailed p = 4.9 × 10−7). c, Similar to Fig. 2e, but here patients are from patient groups 2 and 3 only (n = 22) and are shaded 
based on their DaCP. Note that there are more patients here for analysis from groups 2 and 3 than those shown in (a) and (b) because there we required 
that every patient has at least one low DA and one high/mid DA sample, while here (and in Fig. 2) the DaCP was estimated using all patients with at least 
one sample including those without high/mid DA time points (see Methods). Pearson correlation coefficient and two-tailed p values are shown. Spearman 
correlation coefficient is 0.47 (p = 0.029 two-tailed). d, Evaluating the correlation between DaCP and mean TGSig score at low DA time points (as in (c)) 
by removing patients with DaCP below the indicated cutoff (y axis). The first panel shows the number of patients in the evaluation given the threshold; the 
second and third panels show the corresponding Pearson r and two-tailed p value (shown as -log10(p)).
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Extended Data Fig. 6 | evaluating the predictive capacity and information overlap among the TGSig, SLe-Sig, and iFN-i-dCact signatures. a–d, The 
predictive profile of SLE-Sig (Fig. 3e) (a), TGSig (b), IFN-I-DCact (Fig. 3f) (c), and the non-leading edge genes from the brown module (Fig. 3e) (d) used 
as the sole predictor in logistic regression models of high versus low influenza vaccination responder status. Influenza vaccination data pooled from four 
datasets (Stanford 2008, NIH 2009, Yale 2011, Yale 2012) were used (n = 71 high and low responders). Note that for the brown module (Fig. 3a–d), most 
of the predictive information come from the leading-edge genes since the signature score of genes outside of the leading edge is not predictive (shown 
in (d)). e, f when both TGSig and SLE-Sig were used as predictors in the logistic regression (e) or when both TGSig and IFN-I-DCact score were used as 
predictors (f). In these graphs, the predictor scores are shown on the x axis and the probability that a high responder falls within the predictor score bin is 
shown on the y axis. The error bars correspond to 95% CIs. The two-tailed p value indicates the probability that the coefficient (“effect”) of the term (for 
example, TGSig score) in the logistic regression is 0.
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Extended Data Fig. 7 | RNA-seq analysis of Cd19+Cd20+Cd38++ B cells sorted from healthy individuals. a, Sorting strategy and approach: 
CD19+CD20+and CD20+CD38++ B cell populations were isolated by FACS from peripheral blood samples of six healthy donors. RNA-seq libraries were 
prepared for each isolated sample using the Nugen Ovation SoLo low-input RNA-seq library preparation kit. b, Differential gene expression between the 
CD20+CD38++ B cells and parental CD19+CD20+B cells from six paired samples was compared using DESeq2. Plot shows the log2 fold change versus 
the log2 of the mean normalized counts across all samples for each gene. TGSig genes are shown in red; genes from the differentially expressed gene set 
(BH-adjusted two-tailed p-value <1%, log of mean normalized counts >1; total genes in set: 105) that fall into the top enriched Gene Ontology Biological 
Processes category “Cell Activation” (enrichment analysis done using ToppGene70) are shown in cyan (21 genes). c, Enrichment of the 87 SLE-Sig genes 
in genes ranked by differential expression between CD19+CD20+CD38++ versus CD19+CD20+cells. The p value shown was computed from the GSEA 
test. d, Similar to (c) but instead of the SLE-Sig genes here the top k (k = 10 (TGSig), 30, 50) genes correlated with the frequency of CD20+CD38++  
B cells is assessed (only 713 temporally stable genes with TSM≥ 0.75 were included in the analysis); also see Extended Data Fig. 2. e, Similar to (d) but 
using 7731 genes with TSM ≥ 0.5. A lower/more relaxed TSM cutoff was used to evaluate whether by starting with more genes (therefore potentially more 
statistical power for enrichment analysis) an enrichment signal can be detected.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Supporting data for CiTe-seq single cell analysis to dissect the cellular origin of baseline signatures. a, Single cell scatterplots 
of key markers in the CD4+T cell clusters. C0.0.0 (Naïve), C1.0.0 (Central/Transitional Memory), and C1.1.0 (TEMRA/Effector memory) clusters 
show different distributions of CD62L, CD45RA, CD27, and CD28. b, Distributions of key markers in the CD8+Memory T cell clusters. CD45RA vs. 
CD62L expression are shown in the top panels, ridge plots of CD45RO and CD28 are shown in lower panels. Similar to CD4+cells, these CD8+clusters 
show differences in CD62L and CD45RA distributions; C4.0.1 (TEMRA/Effector Memory) are mainly CD62L negative and CD28 negative, with 
CD45RA+(TEMRA) and CD45RO+(Effector Memory) subsets within this cluster. C4.0.0 and C4.0.3 show highly similar protein expression, with C4.0.3 
being defined by high CD103 expression (upper right panel). c, Unconventional T cells (C7 clusters) show variable CD161, CD8, and CD56 expression. 
C7.0.0 and C7.0.1 are both CD3+/CD161+, with C7.0.1 being CD8 positive while C7.0.0 is CD8 negative. C4.0.2 (NKT-like) are also CD3 positive, but 
express CD57/56 and are CD8/CD161 negative or low. The C4.0.2 cluster also showed distinctly low CD27 and high in CD45RA compared to the C7 
clusters, making it more similar to the C4.0.1 TEMRA/Effector memory CD8+subset, except expressing CD56/CD57; this could also be consistent  
with a Terminal Effector phenotype. d, Hand gating strategy for CD20+CD38++ B cells using CITE-seq data (number of cells in the gate shown in red).  
e, Boxplot comparing the hand gated frequency of CD20+CD38 ++ B cells between 10 high and 10 low responders; p value from Wilcoxon one-tailed test. 
Boxplots’ center line corresponds to the median value, lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles); 
lower and upper whiskers extend from the box to the smallest or largest value correspondingly, but no further than 1.5x inter-quantile range. f, Similar to  
Fig. 5b (10 high versus 10 low responders) but for an independently obtained Type I IFN signature gene set (Supplementary Table 6: IFN gene set; see 
Methods). One or two asterisks denote significance with p < 0.05 or p < 0.01, respectively (Wilcoxon one-tailed test because we are interested in 
assessing whether the high responders are higher than the low responders; see also Supplementary Table 7). g, Results of the “drop out” analysis using 
CITE-seq data. The goal was to assess which cell clusters (or combination of clusters) that were individually significant delineators of high versus low 
responders were essential for prediction using the baseline signatures in bulk (i.e., simulating transcriptional data from PBMCs). The “pseudo bulk” results 
(average across all single cells for every subject in 10 low and 10 high responders) of the three signatures tested are shown on the first row. For subsequent 
rows cells from the indicated cell cluster(s) were dropped before repeating the pseudo-bulk analysis as in row 1. P values obtained from one-tailed 
Wilcoxon test: *: p < 0.05; **: p < 0.01.
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Extended Data Fig. 9 | evaluating cytomegalovirus (CMV) correlates and pdC surface expression phenotypes strongly influenced by genetics from ref. 35  
in high versus low responders. Since CMV status is not available for the cohorts we evaluated, we evaluated whether CMV correlates are significantly 
different between high and low responders in the NIH influenza vaccination cohort. a, Boxplots comparing the frequency of CD4+ TEMRA cells between 
10 low and 10 high responders using CITE-seq (left panel) and between 9 low and 8 high responders using flow cytometry (center panel) data. Wilcoxon 
two-tailed p values are shown. The third panel is a scatter plot of CITE-seq versus the flow cytometry cell frequencies (n = 17). Pearson correlation and 
two-tailed p values are shown. b, Same as (a) but for CD8+ TEMRA cells. c, Boxplots comparing the relative surface protein expression of CD86 and 
HLA-DR in pDCs (cluster C9) between 10 low and 10 high responders using CITE-seq data. Wilcoxon two-tailed p values are shown. For all box plots the 
center line corresponds to the median value, lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles); lower and 
upper whiskers extend from the box to the smallest or largest value correspondingly, but no further than 1.5x inter-quantile range.
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Extended Data Fig. 10 | Relationship between sex and baseline signatures. a, Box plots comparing the TGSig and SLE-Sig scores in females versus 
males; here only subjects with CITE-seq data are included to indicate that sex was not a driver of the differences between 10 high and 10 low responders 
emerged from CITE-seq data analysis (see Fig. 4). Wilcoxon two-tailed p values comparing 11 females and 9 males are shown. For all box plots the center 
line corresponds to the median value, lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles); lower and upper 
whiskers extend from the box to the smallest or largest value correspondingly, but no further than 1.5x inter-quantile range. b, Same as (a) but including  
all high and low responders from original NIH study12. (day 0: 12 females and 12 males; day -7: 13 females and 11 males; day 70: 11 females and 12 males)  
c, same as (b) but including middle responders (i.e., all subjects in the study: day 0: 27 females and 16 males; day -7: 30 females and 16 males; day 70:  
27 females and 17 males). d, Box plots comparing TGSig scores among low, middle, and high responders in males only (all subjects in the original NIH study12 
used: day 0: 6/4/6 for low/middle/high responders, respectively; day -7: 5/5/6; day 70: 6/5/6). e, same as (d) but in females only (day 0: 5/15/17 for 
low/middle/high responders, respectively; day -7: 5/17/8; day 70: 5/16/6). All p values shown for two-group comparison were from the Wilcoxon  
two-tailed test; one-tailed p values shown for three-group comparison were from the Jonckheere trend test (with an a priori alternative hypothesis that  
the high responders >= middle responders >=low responders).
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection The microarray data used were publicly available and can be accessed via NCBI GEO (see below also.) Titer data were publicly available 
and can be retrieved for the following data sets through ImmuneSpace and ImmPort: NIH (SDY80 and through https://chi.niaid.nih.gov/
DATA/chi/09-H-0239/), Yale (SDY400, SDY404), Stanford (SDY212). The Emory antibody titer data was received via personal 
communications and can be found in the figshare site accompanying this paper (see link in the Data Availability section below). Flow 
cytomery data were previously reported in Tsang et al, Cell 2014 and this data was used to gate the additional cell populations (see 
Methods). CITE-seq data were generated using the protocol in the Methods, including using a 10x Genomics (Pleasanton, CA) workflow. 
RNA sequencing analysis was performed on sorted B cell populations derived from peripheral blood mononuclear cells of healthy human 
donors.

Data analysis Full details of software versions can be found in Supplementary Table 8. Flow cytometry data was gated using FlowJo v9.9.3 for OS X. 
Data analysis for the first part of the study (Figs. 1-3 and Ext. Data Figs. 1-7) was performed using R version 3.4.1. CITE-seq data analysis 
was performed using R version 3.6.1. R packages from CRAN and Bioconductor repositories were used and their versions are listed in 
Supplementary Table 8. R code to reproduce the analysis is available at: https://github.com/kotliary/baseline. Software used for low-level 
processing of the CITE-seq data are listed in the "Computational low-level processing of CITE-seq data" section in Methods. Statistical 
analysis for Extended Data Fig. 9 was performed using GraphPad Prism version 8.3.0.328 (GraphPad Software, San Diego, CA).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All data used in the study including the flow cytometry and CITE-seq data in analysis-ready format are available at figshare: https://doi.org/10.35092/
yhjc.c.4753772. All microarray data were publicly available prior the study. Titer data was publicly available for the following data sets through ImmuneSpace and 
ImmPort: NIH (SDY80), Yale (SDY400, SDY404), Stanford (SDY212). The Emory antibody titer data was received via personal communications and can be found via 
the figshare link above. See Supplementary Table 2a for details. The original/raw public gene expression data are available in the National Center for Biotechnology 
Information Gene Expression Omnibus (GEO) under accession numbers: GSE47353, GSE41080, GSE59654, GSE59743, GSE29619, GSE74817, GSE13486, and 
GSE65391. 
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Sample size Sample sizes for the data sets used are reported in Supplementary Table 2a. CITE-seq experiment was performed for 20 samples: 10 low and 
10 high influenza vaccination responders (20 subjects in total). Gene expression of CD38 high B cell populations were assessed using 6 healthy 
donors not included in the influenza vaccination study. See Supplementary Table 9 for demographic information. 

Data exclusions All sample exclusions (due to QC or scientific reasons) were performed prior to data analysis (see Methods for details and reasons for the 
exclusion). 

Replication TGSig was assessed using independent data from multiple publicly available vaccination studies and in one SLE study (see manuscript for 
results), as well as technically replicated by the CITE-seq experiment.

Randomization No randomization of subjects was performed in this study. The subjects were assigned to low, middle and high responder classes by analysis 
of the antibody response to vaccination (log fold-changes of post- vs. pre-vaccination titers, except for Yellow Fever where the initial titer 
readings were close to zero and we only assigned subjects based on the post-vaccination titers). SLE patients were assigned to patient groups 
by unsupervised analysis of their gene expression association with disease activity. SLE samples from multiple visits were categorized to low, 
middle and high disease activity according to the SLEDAI.

Blinding The TGSig signature was developed using the NIH/CHI data only before we assessed it using other datasets. Similarly, signatures associated 
with disease activity were developed using only the SLE dataset first before they were assessed using vaccination data. 
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Antibodies
Antibodies used Antibodies from Biolegend were used in CITE-seq; please see Supplementary Table 10 for details. Antibodies used for flow 

sorting are described in the methods under heading "Sorting of B cell populations from healthy donors."

Validation Quality control and reprodicibility statements are available on the following Biolegend TotalSeq-A  website:  
https://www.biolegend.com/en-us/quality-control 
https://www.biolegend.com/en-us/reproducibility

Human research participants
Policy information about studies involving human research participants

Population characteristics PBMC samples for CITE-seq were acquired previously (see Tsang et al, Cell 2014). Age, gender and race/ethnicity information for 
all subjects is publicly available (See Supplementary Table 9). Cohort characteristics for the other public data we used can be 
found in the original publications (and some may also be available in NCBI GEO and NIAID ImmPort.) See also Supplementary 
Table 2a.

Recruitment PBMC used for CITE-seq were collected prior to the study; see Tsang et al, Cell 2014 for details on the original NIH cohort. See 
also Supplementary Table 2a. For sorting of B cell populations from healthy donors, 6 healthy donors were recruited under IRB 
approved protocol NCT00001281 (See Supplementary Table 9).
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The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.
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Methodology

Sample preparation This study uses previously generated Flow Cytometry data. See the respective publications cited, including Tsang et al, Cell 2014. 

Instrument See the original publications cited, including Tsang et al. Cell, 2014.

Software FlowJo ver.9.9.3 (Becton Dickinson Co., Ashland, OR) on Mac OS X; R version 3.4.1.

Cell population abundance Cell frequencies are expressed as the percentage of the parent population. 

Gating strategy Using the flow cytometry data and predictive B cell populations defined in (Tsang et al., 2014), we gated four new cell subsets 
using the CD38 and CD10 markers) under the CD45+CD19+CD20+ live B-cell population (See Extended Data Fig. 1). Gate 1: CD38
+ cells with CD38 (G610-A) fluorescent intensity over 1000; gate 2: CD38++ cells with fluorescent intensity over 10000; gate 3: 
CD38++CD10+ cells with CD10 (R780-A) fluorescent intensity over 1000; gate 4: CD38++CD10- cells with CD10 fluorescent 
intensity below 1000.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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