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The clinical effectiveness of cancer immunotherapy, including 
checkpoint blockade and adoptive T cell therapy, is based on 
the magnitude, quality, breadth and ability of T cells to infil-

trate tumors1–4. Advances in rapid genomic sequencing has enabled 
the development of personalized cancer vaccines (PCVs) target-
ing tumor-specific mutations termed neoantigens. Early studies in 
mice5,6 and phase I clinical trials7–10 demonstrated the feasibility of 
PCVs to generate neoantigen T cell responses; however, the magni-
tude of CD8+ T cell responses has been limited to date10.

An important variable in improving CD8+ T  cells responses 
with PCVs is the vaccine platform. Accordingly, we developed a 
self-assembling nanoparticle vaccine platform to standardize the 
delivery of long peptides (LPs)11. At 20–50 nm in size, nanoparticles 
allow for efficient drainage via lymphatics and uptake by dendritic 
cells (DCs) that prime CD8+ T  cells12. Further, co-delivery of the 
antigen and Toll-like receptor 7/8 (TLR7/8) agonist (TLR7/8a) 
ensures DC maturation via TLR activation in the same cell that 
has acquired the antigen, to achieve optimal presentation to CD8+ 
T  cells. Indeed, the SNP-7/8a vaccine platform generated higher 
magnitude and breadth of CD8+ T  cells with antitumor effi-
cacy when benchmarked against the most commonly used PCV 
approaches11.

In addition to magnitude, the quality of CD8+ T cell responses 
can be an important determinant in protection against viral  

infections and tumors13,14. Studies elucidating the transcriptional 
and epigenetic heterogeneity of CD8+ T cells has provided impor-
tant advances in understanding lineage differentiation, prolif-
erative potential and functional capacity. In chronic lymphocytic 
choriomeningitis virus (LCMV) infection, T-cell specific tran-
scription factor 1 (TCF1) was identified as a critical transcription 
factor that maintains a precursor population within the exhausted 
T cell (Tex) pool15–19. Highly expressed in naive CD8+ T cells, TCF1 
is downregulated during effector cell differentiation in response 
to pro-inflammatory cytokines such as interleukin-12 (IL-12) and 
type I interferons (IFNs)20,21. Previously thought to be dysfunc-
tional, a subset of PD-1+ Tex referred to as progenitor exhausted or 
stem-like cells that express TCF1 remain responsive to checkpoint 
inhibitors (CPIs); they maintain stem cell-like quality by retain-
ing the capacity to proliferate and self-renew22–24. Studies assessing 
CD8+ tumor-infiltrating lymphocytes (TILs) in humans identi-
fied gene signatures of stem-like cells including Tcf7 (encoding 
TCF1), associated with better prognosis and response to check-
point blockade25–30. Adoptive transfer studies in mice showed that 
the self-renewing capacity of TILs was regulated by TCF1 (ref. 31) 
whereas cells lacking TCF1 were less effective in controlling tumor 
growth32. Collectively, these data suggest an important role for 
TCF1+PD-1+CD8+ T  cells in mediating protection against viral 
infections and tumors.
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Fig. 1 | The route and dose of SNP-7/8a immunization controls the magnitude and phenotype of antigen-specific CD8 T cells. a, Schematic of peptide–TLR7/8 
agonist vaccines that form self-assembling nanoparticles (SNP-7/8a). b, C57BL/6 mice (n = 10) were vaccinated subcutaneously or intravenously at 2, 8 or 
32 nmol on days 0 and 14 with SNP-7/8a containing Reps1, an MC38 neoantigen. Whole blood was collected on days 7 and 21 to measure the frequency of 
tetramer+ CD8+ T cells. c, Flow cytometric analysis of single cells stained with Reps1 tetramer and CD44 antibody. The numbers indicate the percentage of 
the cell population within the gate. d, Bar graphs summarizing the frequency of tetramer+ CD8+ T cells from blood (n = 10) on day 7. e, CD8+ T cells were 
subdivided into MPECs (tan gate) or SLECs (crimson gate) based on CD127 and KLRG1 expression. f, Bar graphs showing the proportions of MPEC/SLEC 
subpopulations in blood on day 7 (n = 10). g, The frequency of MPECs is negatively correlated with the frequency of tetramer+ CD8+ T cells. h–j, Tetramer+ 
cells can be subdivided into PD-1+ (black), Tim-3+ (light green) or PD-1+Tim-3+ (dark green) cells (h). The bar graphs show the proportions of PD-1/Tim-3 
subpopulations on day 7 (n = 10) for tetramer+ (i) and IFN-γ+ cells (j). Data are representative of two independent experiments. The bars represent the median. 
d,f,i,j, Statistics were assessed by Kruskal–Wallis test with Dunn’s correction for multiple comparisons. g, Statistics were assessed by Spearman correlation.
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In this study, we demonstrate how altering the route and dose 
of vaccination with SNP-7/8a influences the magnitude, transcrip-
tional quality and antitumor capacity of neoantigen-specific CD8+ 
T cells. In addition, we identify the innate mechanisms for how the 
route of vaccination alters antigen duration and tropism for distinct 
DC subsets critical for imprinting CD8+ T cell responses.

Results
Route and dose of SNP-7/8a immunization alter the magni-
tude and quality of neoantigen+ CD8+ T  cells. SNP-7/8a is a 
self-assembling nanoparticle vaccine platform that standardizes the 

delivery of LPs11 (Fig. 1a). In this study, we determined how modify-
ing the dose and route of SNP-7/8a immunization influenced CD8+ 
T  cell responses. Mice were vaccinated with SNP-7/8a containing 
Reps1, an MC38 murine colon carcinoma neoantigen (Fig. 1b). 
Whole blood was collected to measure neoantigen-specific CD8+ 
T cells by tetramer staining (Fig. 1c and Extended Data Fig. 1a) or 
IFN-γ after restimulation with Reps1 peptide (Extended Data Fig. 1b).  
At a dose of 8 nmol, subcutaneous administration of SNP-7/8a 
(SNP-SC) generated 20-fold higher neoantigen-specific CD8+ T cells 
compared to intravenous vaccination (SNP-IV) (Fig. 1d). CD4+ 
T cells produced IFN-γ at low frequencies as described previously11 
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(Extended Data Fig. 1c). Together, these data show that the route of 
vaccination alters the magnitude of the CD8+ T cell response.

Next, we characterized CD8+ memory precursor effector cells 
(MPECs) or short-lived effector cells (SLECs) based on the dif-
ferential expression of CD127 (IL-7R) and KLRG1 (Fig. 1e). A 
high proportion of neoantigen-specific CD8+ T cells after SNP-SC 
were SLECs (approximately 60% of tetramer+) whereas SNP-IV 
cells were primarily MPECs (approximately 60% of tetramer+) 
(Fig. 1f and Extended Data Fig. 1d). The frequency of MPECs was 
inversely correlated to the frequency of tetramer+ CD8+ T  cells 
(Fig. 1g and Extended Data Fig. 1e). We then assessed the expres-
sion of PD-1 and Tim-3, canonical markers of T  cell activation, 
exhaustion or severe dysfunctionality33 (Fig. 1h). Tetramer+ CD8+ 
T cells from both SNP-SC and SNP-IV mice were PD-1+ but only 
the SC-vaccinated groups expressed low levels of Tim-3 (Fig. 1i and 
Extended Data Fig. 1f). Peptide restimulation markedly increased 
the expression of PD-1 and Tim-3 after SNP-SC but not SNP-IV 
(Fig. 1j and Extended Data Fig. 1g). Taken together, the data sug-
gest that the route of vaccination influences the differentiation of 
neoantigen-specific CD8+ T cells.

IV administration of SNP-7/8a generates TCF1+PD-1+CD8+ 
T  cells with antitumor capacity on anti-PD-L1 treatment. To 
investigate the antitumor capacity of neoantigen-specific CD8+ 
T  cells, mice were challenged with MC38 tumors (Fig. 2a). To 
evaluate the effect of a CPI, mice were also treated with or with-
out anti-PD-L1. Anti-PD-L1 treatment alone was not sufficient to 
control tumor growth in unvaccinated mice (Fig. 2b and Extended 
Data Fig. 2a) or extend survival (Fig. 2c). SNP-SC-vaccinated mice 
significantly controlled tumor growth compared to naive mice (Fig. 
2b) independent of CPI treatment. Despite the tenfold reduction 
in CD8+ T cell responses (Fig. 2d), SNP-IV-vaccinated mice were 
able to control tumor growth (Fig. 2b) and had extended survival 
compared to naive mice (Fig. 2c) only when combined with CPI 
treatment.

The distribution of tetramer+ CD8+ T cells was assessed at the 
time of tumor challenge in the blood, spleen, popliteal lymph nodes 
(SC vaccine-draining) and lungs (Fig. 2e). Neoantigen-specific CD8+ 
T cells generated by SNP-SC were significantly higher in all tissues 
compared to SNP-IV. We detected a population of TCF1+PD-1+ 
within tetramer+ cells in the spleen (Fig. 2f). Such cells have been 
described in chronic LCMV15 as a population of exhausted cells that 
retain proliferative capacity. SNP-IV generated a higher proportion 
of TCF1+ cells, representing approximately 50% of tetramer+ CD8+ 
T cells (Fig. 2g). TCF1+ cells in the SNP-IV group exhibited high 
CD127 and low KLRG1 (Fig. 2h). TCF1+CD8+ T  cells generated 
by SNP-IV also expressed proteins upregulated by Tex progenitor 
cells that retained a stem-like program15,18,27 such as eomesodermin 
(EOMES) and CXCR3 (Fig. 2h). However, CXCR5 expressed by 
stem-like cells after chronic LCMV was not detected in TCF1+CD8+ 
T cells after SNP-7/8a vaccination. As a staining control, CD4+ fol-
licular helper T (TFH) cells expressed CXCR5 (Extended Data Fig. 
2b). In contrast, TCF1+CD8+ T cells generated by SNP-SC had high 
expression of KLRG1 and lower EOMES levels (Fig. 2h). To assess 

the generalizability of these observations, mice were immunized 
with SNP-7/8a containing other antigens including E7, ovalbumin 
and Trp1 (Extended Data Fig. 2c). Similarly, SNP-IV resulted in 
lower magnitude responses (Extended Data Fig. 2d) but a higher 
frequency of TCF1+PD-1+ cells (Extended Data Fig. 2e,f) and 
MPECs (Extended Data Figs. 2g,h) compared to SNP-SC, regard-
less of the antigen. These data indicate a phenotypic difference in 
the neoantigen-specific CD8+ T cells generated depending on the 
route of vaccination.

Single-cell analysis of neoantigen-specific CD8+ T cells identifies 
a stem-like gene signature after SNP-IV. To further characterize 
neoantigen-specific CD8+ T  cells, we sorted tetramer+ cells after 
SNP-SC or SNP-IV vaccination (Fig. 3a and Extended Data Fig. 3a). 
Tetramer+ CD8+ T cells from individual mice were barcoded before 
single-cell RNA sequencing (scRNA-seq) using the droplet-based 
system of 10x Genomics (Extended Data Fig. 3b). Cells were clus-
tered based on gene expression using an unsupervised inference 
analysis (Monocle 3). The 12 clusters identified were visualized by 
uniform manifold approximation and projection for dimension 
reduction (UMAP) algorithm (Fig. 3b). Clustering data showed sep-
aration of single cells by route of vaccination (Fig. 3c and Extended 
Data Fig. 3c). SNP-IV neoantigen+ cells were primarily in clusters 2 
and 4, which we refer to as ‘stem-like’ cells given that Tcf7 (encod-
ing TCF1) was a significant differentially expressed gene (DEG) in 
these two clusters (Fig. 3d and Supplementary Table 1). In contrast, 
SNP-SC neoantigen+ cells mainly appeared in the ‘effector’ cluster 
consisting of clusters 1, 3, 5, 7 and 8 (Fig. 3d). Both stem-like and 
effector clusters formed stable states (high-density areas on UMAP)34 
(Extended Data Fig. 3d). Cluster 10 represents a small population of 
naive T cells (Ccr7, Lef1, Sell, Dapl1, Igfbp4) (Extended Data Fig. 3e) 
that may have been contaminated while sorting due to low frequen-
cies with SNP-IV. Excluding naive cells, the T cell receptor (TCR) 
repertoire was largely diverse after both routes of immunization 
(Extended Data Fig. 3f). The fraction of stem-like or effector cells 
within each clone was driven by the route of vaccination, rather than 
clonotype identity (Extended Data Fig. 3g).

Next, we reconstructed a developmental trajectory of 
neoantigen-specific CD8+ T cells. The pseudotime analysis showed 
a trajectory originating from naive T cells, branching into stem-like 
cells and eventually effector cells (Fig. 3e). We further compared 
stem-like cells in this study with published datasets from chronic 
LCMV or tumor models18,22,32, identifying 337 shared genes and 50 
unique genes in our dataset (Fig. 3f and Supplementary Table 2). 
Applying a list of previously described stem-like genes (also referred 
to as ‘Tex progenitors’) and effector genes (Teff) in the context of 
LCMV infection18, we confirmed that the stem-like gene signature 
was highly expressed in clusters 2 and 4, whereas the effector gene 
signature was more pronounced in clusters 1, 3, 5, 7 and 8 (Fig. 3g).

Consistent with flow cytometry detection of TCF1 in SNP-IV 
CD8+ T cells (Fig. 2f), the stem-like cluster expressed high levels of 
Tcf7 (Fig. 3g). These cells also expressed genes associated with T cell 
exhaustion—Tox, Lag3 and Ctla4—yet upregulated antiapoptotic 
genes such as Bcl2 (Supplementary Table 2). As previously observed 

Fig. 3 | Single-cell analysis of neoantigen+ CD8+ T cells by RNA-seq identifies stem-like gene signature in SNP-IV cells and an effector gene signature 
in SNP-SC cells. a, Mice (n = 5) were vaccinated subcutaneously or intravenously with SNP-7/8a (Reps1). Spleens were collected on day 28 and tetramer+ 
CD8+ T cells were sorted by flow cytometry. scRNA-seq was performed by 10x Genomics. b, UMAP of sorted neoantigen+ CD8+ T cells from spleens. 
Twelve clusters were generated by Monocle 3 (k = 12) analysis of gene expression. c, Single cells from SNP-IV (top) or SNP-SC (bottom) clusters in 
distinct regions of the UMAP space. d, Bar graphs summarizing the frequencies of stem-like cells (clusters 2 and 4, left) or effector cells (clusters 1, 3, 
5, 7 and 8, right) of total tetramer+ CD8+ T cells in the spleen (n = 5). e, Reconstruction of pseudotime trajectory using the Monocle 3 algorithm. f, Venn 
diagram comparing the identified DEGs of stem-like cells in this study and three published datasets. g, The lists of stem-like or effector gene signatures 
were overlaid on the UMAP of single-cell data. The expression of the top DEGs of stem-like (top) or effector (bottom) cells is presented as UMAP plots. h, 
Heatmap of selected DEGs expressed in each cluster organized along the pseudotime trajectory. i, Heatmap of significant changes in regulons’ activity as 
inferred by SCENIC analysis. AUC, area under the curve. d, Statistics were assessed by Mann–Whitney U-test.
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in stem-like CD8+ T cells from chronic LCMV18,19,35, Slamf6 (encod-
ing Ly108) was highly expressed in the stem-like CD8+ T cells after 
IV vaccination. Unlike data from LCMV studies, the stem-like 

CD8+ T cells reported in this study did not show increased Cxcr5, 
which is consistent with the flow cytometry data (Supplementary 
Table 2 and Extended Data Fig. 3h). The stem-like cluster expressed 
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high levels of Xcl1, which encodes for XCL1, the ligand for XCR1+ 
conventional type 1 DCs (cDC1s). The effector cluster expressed 
genes encoding cytotoxic granules, such as Gzma and Gzmb, as well 
as inhibitory receptors such as Klrg1 (Fig. 3h and Supplementary 
Table 1). The chemokine receptor Cx3cr1 expressed by transitory, 
effector-like cells in chronic LCMV19,35, was also highly expressed in 
our effector cluster. Other notable genes that were highly expressed 
in the effector cluster include Zeb2 (triggers cytotoxic T lympho-
cytes to adopt a terminally differentiated state36), Lgals1 (galectin-1, 
a proapoptotic molecule37) and S1pr5 (S1PR5, cues the exit from 
lymphoid tissue38) (Fig. 3g,h).

To further evaluate cellular states based on the expression of 
transcription factors and target genes, we measured the activity of 
regulons by performing SCENIC (single-cell regulatory network 
inference and clustering) analysis34 (Fig. 3i). Changes in the tran-
scriptional network were detected along the Monocle 3 pseudo-
time trajectory. Upregulation of the EOMES regulon (Eomes and 
21 related genes) was measured in the stem-like cluster, in line with 
EOMES detected by flow cytometry (Fig. 2h). In contrast, the effec-
tor cluster was marked by upregulation of several regulons including 
Runx3, Runx2, Rora and Fli1 (Fig. 3i). Taken together, at the tran-
scriptional level, the neoantigen-specific CD8+ T cells generated by 
SNP-IV expressed a stem-like gene signature, whereas SNP-SC cells 
expressed an effector gene signature. Further, trajectory inference 
analysis of scRNA-seq data highlighted differences in the develop-
mental states of stem-like and effector CD8+ T cells.

Therapeutic vaccination by SNP-IV, but not SNP-SC, controls 
tumor growth. To assess the antitumor capacity of SNP-7/8a in 
mice with established tumors, MC38 was implanted and vaccina-
tion was administered on days 7 (prime) and 14 (boost) (Fig. 4a). 
Anti-PD-L1 was given at the time of boost. In this study, the dose 
of SNP-IV was increased to 32 nmol to generate CD8+ T  cells of 
comparable magnitude to the SNP-SC mice (Fig. 4b). Both vaccina-
tion routes resulted in approximately 10% Reps1+CD8+ T cells (Fig. 
4c). Despite similar numbers of neoantigen-specific CD8+ T cells, 
SNP-SC mice could not control tumor growth whereas SNP-IV 
mice significantly controlled tumor growth compared to naive mice 
(Fig. 4d). The antitumor efficacy of SNP-IV was antigen-specific 
and adjuvant-dependent since vaccinating with an irrelevant anti-
gen intravenously (Fig. 4e) or no adjuvant (SNP with no TLR7/8a) 
(Extended Data Fig. 4a) was ineffective. The differences in tumor 
growth was further confirmed by the prolonged survival of mice 
vaccinated with SNP-IV but not SNP-SC (Fig. 4f). Decreasing the 
SNP-SC dose or reducing to a single vaccination was not effective 
(Extended Data Fig. 4b). Tumor control (Fig. 4g) and increased sur-
vival (Fig. 4h) by SNP-IV were abrogated by depleting CD8+ T cells 
but not CD4+ T cells or natural killer cells (Extended Data Fig. 4c,d).

To delineate each variable of the SNP-IV treatment regimen, 
MC38 tumor-bearing mice were vaccinated on day 7 with 32 nmol 
of SNP containing Reps1 (Fig. 4i). On day 14, groups of mice were 
either left untreated (‘prime’), given CPI (‘prime and CPI’), vacci-
nated again (‘prime and boost’) or vaccinated again together with 

CPI (‘prime, boost and CPI’). Indeed, the combination of both vac-
cinations and CPI was most effective at controlling tumor growth 
(Fig. 4i) and extending survival (Fig. 4j). Spleens were collected 
from mice on day 14 (post-prime) and day 21 after tumor implanta-
tion (Fig. 4k). Without the boost or CPI treatment, the frequency 
of neoantigen-specific CD8+ T cells in the spleen was significantly 
lower (sixfold) than mice that received a boost and CPI (Fig. 4l). A 
clear expansion of neoantigen-specific CD8+ T cells was observed 
when enumerating tetramer+ CD8+ T  cells in the spleen on day 
21 (Fig. 4m). On day 14, approximately 80% of CD8+ T cells were 
stem-like (TCF1+GzmB−) after SNP-IV, compared to 35% after 
SNP-SC (Fig. 4n). Co-staining with PD-1 confirmed that these cells 
were high in PD-1 (Extended Data Fig. 4e). By day 21 post-SNP-IV, 
neoantigen+ CD8+ T cells from the spleens of tumor-bearing mice 
had mostly differentiated to effector cells (TCF1−GzmB+) (Fig. 4n). 
Mice receiving both immunizations and CPI maintained high num-
bers of stem-like cells in the spleen (Fig. 4o) unlike the other groups 
that did not receive a boost or CPI. This coincided with a significant 
tenfold increase in neoantigen+ effector cells expressing granzyme B 
(GzmB) in mice that received boost and CPI, compared to mice that 
received boost with no CPI (Fig. 4p). In contrast, a modest 1.5-fold 
expansion of effector cells in the spleen was observed after SNP-SC 
(Extended Data Fig. 4f). Importantly, neoantigen-specific CD8+ 
T cells generated by SNP-SC coexpressed PD-1 and Tim-3 by day 
21 (approximately 35%) while SNP-IV cells did not express Tim-3 
in the spleen (Extended Data Fig. 4g). On day 21, SNP-IV cells had 
increased Ki-67 expression in blood and spleen (Extended Data 
Fig. 4h), indicating an expansion of circulating effector cells. Taken 
together, these results highlight the capacity of stem-like neoanti-
gen+ CD8+ T cells generated by SNP-IV to proliferate and replenish 
effector cells for antitumor responses upon CPI treatment.

Prolonged antigen persistence, DC uptake and activation after 
SNP-SC but not SNP-IV. To investigate differences in the mecha-
nism of CD8+ T cell priming, fluorescently labeled SNP-7/8a was 
used to visualize the distribution and uptake by DCs. In vivo imag-
ing of mice revealed that SNP-SC was localized to the site of vac-
cination two weeks after vaccination, highlighting a depot effect 
(Extended Data Fig. 5a). In contrast, SNP-IV resulted in systemic 
distribution of the vaccine detectable up to 24 h by in vivo imag-
ing (Extended Data Fig. 5a). Lymph node sections analyzed by 
confocal microscopy confirmed that vaccine could be detected up 
to two weeks after SNP-SC, primarily in the T cell zones (Fig. 5a 
and Extended Data Fig. 5b). Co-staining with monocyte, macro-
phage and DC markers revealed colocalization of vaccine with 
cells expressing CD11b and CD11c (Extended Data Fig. 5c). After 
SNP-IV, confocal images of spleen sections showed vaccine uptake 
by CD11b+CD11c+ cells situated in the marginal zones primar-
ily after 6 and 24 h with minimal vaccine detection after 3 and 7 d 
(Fig. 5b). Popliteal lymph nodes and spleens were collected for 
flow cytometry analysis (Extended Data Fig. 5d). Labeled vaccine 
could be detected in both cDC1s (Lin−MHC-II+CD11c+XCR1+) 
and monocyte-derived DCs (Lin−CD64+F4/80+MHC-II+CD11c+) 

Fig. 4 | Therapeutic vaccination with SNP-IV generates neoantigen-specific CD8+ T cells with superior antitumor capacity. a, Mice (n = 10) were implanted 
with MC38, vaccinated with SNP-7/8a (Reps1) and treated with CPI. b,c, Flow analysis of blood stained with tetramer and CD44 antibody (n = 10). d, Tumor 
growth in SNP-SC or SNP-IV mice (n = 10). e,f, Average tumor growth (e) and survival (f) of Reps1 IV (red), irrelevant IV (maroon), Reps1 SC (blue) and 
unvaccinated (black) mice. g,h, Average tumor growth (g) and survival (h) of SNP-IV mice treated with isotype (red) or blocking antibodies against CD8+ 
(black), CD4+ (blue) and natural killer cells (purple) (n = 10). i,j, Average tumor growth (i) and survival (j) of mice vaccinated with SNP-IV once (blue), 
vaccinated once and given CPI (green), vaccinated twice (orange), vaccinated twice and given CPI (red) or untreated (black) (n = 10). k, Flow cytometry 
analysis of spleens stained with tetramer and CD44 antibody. l,m, Frequency (l) and total number (m) of tetramer+ CD8+ T cells on day 21 (n = 3). n, Flow 
cytometry analysis of spleens stained with TCF1 and GzmB. FITC, fluorescein isothiocyanate. o,p, Total number of stem-like cells (TCF1+GzmB−) (o) and 
effector cells (TCF1−GzmB+) (p) on day 21 (n = 3) (unpaired t-test). Data are representative of four independent experiments. c, The bars represent the 
median. l,m, The bars represent the mean ± s.e.m. c, Statistics were assessed by Mann–Whitney U-test. e,g,i, Statistics were assessed by two-way ANOVA. 
f,h,j, Statistics were assessed by log-rank test. l,m,o,p, Statistics were assessed by two-tailed unpaired t-test.
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in the popliteal lymph nodes after SNP-SC as late as 3 weeks after 
vaccination (Fig. 5c and Extended Data Fig. 5e). Similarly, SNP-IV 
resulted in uptake by cDC1s and monocyte-derived DCs in the 
spleen. However, this peaked at 6 h after vaccination (Fig. 5c and 

Extended Data Fig. 5f). The costimulatory molecules CD80 and 
CD86 as well as the regulatory marker PD-L1 were upregulated in 
cDC1s and monocyte-derived DCs after vaccination by both routes 
(Fig. 5d). SNP-IV resulted in transient DC activation that peaked 
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Fig. 6 | Prolonged antigen presentation by DCs drives CD8+ T cell responses after SNP-SC. a,b, Kinetics of neoantigen-specific CD8+ T cells after SNP-SC 
(a) or SNP-IV (b) in Batf3−/− (triangle), Ccr2−/− (square) and Ccr2DTR treated with diphtheria toxin (half square) as compared to WT mice (circle) (n = 10). c, 
IL-12 (left) and IFN-α (right) were measured by ELISA in the supernatants of cultured spleens or popliteal lymph nodes after SNP-IV or SNP-SC, respectively 
(n = 3). d, Bar graphs summarizing neoantigen-specific CD8+ T cells after SNP-SC in WT mice (circle) (n = 8), Il12b−/− (open triangle) (n = 4), Ifnar−/− (open 
square) (n = 5), Tlr7−/− (open circle) (n = 5). e,f, Flow analysis of splenocytes stained with CD44 antibody (e) and tetramer (f) after SNP-SC in WT (n = 8) 
or Il12b−/− (n = 4) mice. g,h, CD8+ T cells in the spleen after SNP-SC were subdivided into TCF1− (gray), TCF1+PD-1− (teal) or TCF1+PD-1+ (dark blue) (g). The 
bar graphs summarize the frequencies of TCF1 subpopulations (n = 4) (h). i, CD45.1 mice (n = 3) were vaccinated with SNP-7/8a (SIINFEKL). 1, 3 or 7 d after 
vaccination, naive CD8+ T cells from CD45.2 OT-I mice were labeled and transferred into CD45.1 mice. Four days after transfer, spleens were assessed for 
cell proliferation. j, Graphs summarizing the number of CPDlo cells after SNP-SC (left) or SNP-IV (right) (n = 3). Data are representative of two independent 
experiments. d, The bars represent the median. h, The bars represent the mean. a–c,j, Mean ± s.e.m. a,b,j, Statistics were assessed by Mann–Whitney U-test. 
d, Statistics were assessed by Kruskal–Wallis test with Dunn’s correction for multiple comparisons.
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at day 1, whereas SNP-SC resulted in prolonged activation of DCs 
over 3 d (Fig. 5d). Expression of CD80, CD86 and the migratory 
marker CCR7 on monocyte-derived DCs were detectable 3 weeks 
later suggesting continued infiltration of antigen-presenting cells 
(APCs) into the draining lymph nodes (Extended Data Fig. 5g). 
The frequency of cDC1s in the spleen after SNP-IV peaked at 6 h 
and diminished to below baseline levels at 24 h as assessed by flow 
cytometry (Extended Data Fig. 5h,i). In contrast, the numbers of 
cDC1s remained high three weeks after SNP-SC in the popliteal 
lymph nodes (Extended Data Fig. 5h,i). The differences in the pres-
ence and activation of cDC1s at the site of priming highlight the 
potential importance of DCs in modulating CD8+ T  cell quality 
after SNP vaccination.

cDC1s and monocyte-derived DCs are required for CD8+ T cell 
priming. To directly address the role of specific APCs in priming 
CD8+ T  cells, wild-type (WT), Batf3−/− and Ccr2−/− mice lacking 
cross-presenting cDC1s and circulating monocytes, respectively 
were immunized with SNP-7/8a (Extended Data Fig. 6a,b). The 
frequency of neoantigen-specific CD8+ T  cells was significantly 
decreased after SNP-SC in Batf3−/− (fourfold lower) and Ccr2−/− 
(20-fold lower) mice (Fig. 6a). Since monocytes remain in the spleens 
of Ccr2−/− mice, we generated bone marrow chimeras of Ccr2DTR 
mice to conditionally deplete monocytes in peripheral tissues and 
lymphoid organs (Extended Data Fig. 6c,d). After SNP-IV, the fre-
quency of neoantigen-specific CD8+ T cells significantly decreased 
by diphtheria toxin treatment of CCR2DTR bone marrow chimera 
mice (fivefold lower) and Batf3−/− mice (15-fold lower) suggesting 
dependency on monocytes and cDC1s (Fig. 6b). Mice receiving WT 
bone marrow with or without diphtheria toxin treatment and mice 
receiving Ccr2DTR bone marrow without diphtheria toxin treatment 
generated similar frequencies of neoantigen-specific CD8+ T cells 
after SNP-IV (Extended Data Fig. 6e). Collectively, these data high-
light a critical role for not only BATF3-dependent cDC1s but also 
monocyte-derived DCs in priming CD8+ T cells with the SNP-7/8a 
vaccine.

Since type I IFN (promoting cross-presentation39) and IL-12 
(promoting TH1 skewing40) can have critical roles in controlling 
CD8+ T  cell priming, these cytokines were measured. SNP-IV 
induced transient production of IL-12 and IFN-α, which peaked at 
6 h after vaccination in blood and spleen (Fig. 6c and Extended Data 
Fig. 6f). In contrast, IL-12 was detected up to 2 weeks after SNP-SC 
in the popliteal lymph nodes (Fig. 6c), which is consistent with the 
duration of vaccine detection (Fig. 5a).

To investigate the importance of IL-12 and IFN-α, Il12b−/− and 
Ifnar−/− mice were vaccinated (Fig. 6d), with Tlr7−/− mice used as a 
negative control. Both priming and boosting of neoantigen-specific 
CD8+ T  cells with SNP-SC or SNP-IV were IFN-α- and 
TLR7-dependent but IL-12-independent (Fig. 6d). In mice defi-
cient for IFN-α receptor and TLR7, fewer monocytes and cDC1s 
were in the popliteal lymph nodes after SNP-SC than in WT mice 
(Extended Data Fig. 6g). To assess whether IL-12 affected the qual-
ity of neoantigen+ CD8+ T cells21, we collected spleens after SNP-SC 
boost. Similar to blood responses, Il12b−/− mice had comparable 
tetramer+ CD8+ T  cell responses in the spleen as WT mice after 
SNP-SC (Fig. 6e,f). Further, similar frequencies of TCF1 in both 
Il12b−/− and WT neoantigen+ CD8+ T cells suggest that IL-12 signal-
ing was not mediating TCF1 downregulation (Fig. 6g,h). EOMES 
expression was higher in Il12b−/− compared to WT mice after 
SNP-SC (Extended Data Fig. 6h).

SNP-SC leads to prolonged antigen retention and presentation 
in vivo. Based on the data showing prolonged retention of vaccine 
and innate activation after SC immunization (Fig. 5c,d), we hypoth-
esized that antigen persistence mediated the differences in CD8+ 
cell quality between SC and IV vaccination. Naive CD45.2 OT-I 

CD8+ T cells were labeled with a fluorescent dye and transferred to 
CD45.1 congenic mice 1, 3 or 7 d after vaccination with SNP-7/8a 
delivering the OT-I peptide (SIINFEKL) (Fig. 6i). Spleens were col-
lected 4 d after cell transfer to assess the extent of CD8+ T cell prolif-
eration as an indicator of antigen presence. At all three time points, 
cell proliferation could be detected, with the largest numbers of OT-I 
measured being 7 d after SNP-SC vaccination (Fig. 6j). In contrast, 
SNP-IV resulted in a burst of OT-I expansion when transferred 1 d 
after vaccination followed by significantly lower cell numbers 3 and 
7 d after vaccination (Fig. 6j). Overall, the prolonged persistence of 
antigen in the popliteal lymph nodes drove T  cell differentiation, 
thus explaining the high magnitude but lower proliferative potential 
of neoantigen-specific CD8+ T cells generated by SNP-SC.

Discussion
In this study, we report how SNP-7/8a dose and route control 
the magnitude and transcriptional quality of neoantigen-specific 
CD8+ T cells. In the context of cancer immunotherapy, persistence 
and functional capability are important factors given the chronic 
nature of cancer. The most striking finding was the demonstra-
tion that IV vaccination led to a major difference in the phenotypic 
and transcriptional quality of the CD8+ T cell response compared 
to SC vaccination. SNP-7/8a vaccination enables specific genera-
tion of stem-like or effector cells by modifying the route of vac-
cination. We demonstrate how this can be achieved in vivo using 
CD8+ T  cells primed from a polyclonal naive repertoire, without 
the caveats of TCR transgenic systems using model antigens. We 
note that IV administration of RNA-based PCV has been shown 
to be more immunogenic than direct lymph node injection; how-
ever, the transcriptional quality of CD8+ T  cells by this route has 
not been assessed41,42. In this study, we clearly demonstrate that 
neoantigen-specific CD8+ T cells generated by SNP-IV have a high 
proportion of TCF1+PD-1+ stem-like cells and mediate antitumor 
effects dependent on CPI.

The scRNA-seq data of neoantigen+ CD8+ T cells revealed dis-
tinct transcriptional landscapes after SNP-SC or SNP-IV, providing 
insight into the dynamics of CD8+ T cell activation and differentia-
tion after vaccination: naive cells give rise to stem-like cells that can 
be further differentiated into effector cells. Comparison of clusters 
revealed several new genes highly expressed by stem-like CD8+ 
T cells. Xcl1 expression by stem-like CD8+ T cells suggests a role for 
XCR1+ cDC1s43 in licensing their activity in the spleen. In stem-like 
cells, the expression of Tox, recently described as a crucial regula-
tor of T cell exhaustion44,45, may be beneficial in preventing over-
stimulation of CD8+ T cells leading to cell death, especially in the 
context of cancer where there is antigen persistence. Interestingly, 
neoantigen-specific CD8+ T cells generated by SNP-IV resemble the 
stem-like or progenitor exhausted cells described in chronic LCMV 
infection, whereas cells generated by SNP-SC share genes upregu-
lated in acute LCMV infection15,18,19. Epigenetic analysis, specifically 
around the Tox locus, may reveal whether vaccine-induced CD8+ 
T cells resemble a distinct developmental program or share specific 
features of exhausted cells identified in LCMV46,47. Unlike chronic 
LCMV where there is persistent antigenic stimulation, we observed 
stem-like CD8+ T cells after IV vaccination of a peptide-based vac-
cine where the duration of antigenic delivery peaked at 6 h. These 
data suggest distinct mechanisms of CD8+ T cell priming in vac-
cination versus natural infection and demonstrate the rapidity by 
which such cells can be induced by the SNP-7/8a vaccine, which will 
be critical for therapeutic tumor vaccination.

The covalent linking of antigen and adjuvant into a nanopar-
ticle was designed to synchronously deliver the innate stimulation 
with the antigen for efficient cross-presentation. Several important 
factors may contribute to the modulation of CD8+ T  cell quality 
on IV vaccination: location of CD8+ T cell priming; actual dose of 
vaccine delivered to splenic DCs; and degree of inflammation. The 
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duration of antigen persistence of up to three weeks in the draining 
lymph nodes by SNP-SC contrasted with a short burst of antigen 
in the spleen by SNP-IV. Despite the brief duration, the spleen is 
a large reservoir for DCs as noted by the tenfold increase in abso-
lute numbers of cDC1s or monocyte-derived DCs acquiring vac-
cine at the peak of SNP-IV delivery, compared to the numbers of 
vaccine+ DCs in the popliteal lymph nodes at the peak of SNP-SC 
delivery. This is probably the key factor in regulating the magnitude 
and quality of responses, respectively. In a different cancer vaccine 
model using peptide and incomplete Freund’s adjuvant, antigen 
persistence also led to dysfunctional CD8+ T cells48. However, it is 
notable in the prophylactic tumor model presented in this study, 
that the CD8+ T cells generated by SC vaccination were still highly 
functional. Confocal images of lymph node sections showed that, 
while antigen was retained for 3 weeks in the lymph nodes after SC 
vaccination, the localization of antigen changed: in the first 24 h, 
antigen was mostly in the subcapsular sinus, but over the next 2 
weeks, antigen concentrated into the T cell zones. This slow-release 
effect has been the basis of other rational vaccine designs, regulat-
ing the kinetics of antigen exposure49. Thus, SNP-SC was efficient 
at generating effector CD8+ T cells in high numbers. This approach 
may be valuable for prophylactic cancer vaccines targeting known 
shared tumor antigens.

Importantly, co-delivery of antigen and adjuvant permits sys-
temic IV administration by limiting the tolerogenic effects of hav-
ing free peptide taken up by APCs in the absence of a danger signal. 
The short-lived pharmacokinetics of SNP-IV in the spleen probably 
accounts for the lower magnitude when given at the same dose as 
SNP-SC. The reduction in numbers of splenic cDC1s between 24 h 
and 3 d after IV vaccination may serve as a negative immunoregu-
latory mechanism. Further, the dependency on monocyte-derived 
DCs for CD8+ T cell responses suggests that these cells either con-
tribute indirectly by providing the required cytokines for T  cell 
activation, by transferring antigen to other DCs, or directly by pre-
senting antigens to CD8+ T  cells. After SNP-IV, the frequency of 
cDC1s, the canonical subset for efficient cross-priming, were dra-
matically reduced. We hypothesize that monocyte-derived DCs, 
generally considered less efficient APCs compared to cDC1s50, may 
be responsible for providing less-differentiated, more stem-like 
CD8+ T cells. Future studies should focus on how these distinct DC 
subsets can modify both the magnitude and quality of CD8+ T cells 
in the context of vaccination.

In conclusion, this study shows that the route of administra-
tion of the SNP-7/8a vaccine substantially affected the magnitude 
and transcriptional quality of neoantigen-specific CD8+ T  cell 
responses, which had a corresponding impact on functionality and 
therapeutic outcomes. These findings have implications in the clini-
cal development of therapeutic vaccines for cancer patients.
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Methods
Mice. Female B6 mice (C57Bl/6J), Ccr2−/−, Batf3−/−, Ifnar−/−, Tlr7−/− and Il12b−/− 
were purchased from The Jackson Laboratory and maintained in pathogen-free 
conditions. OT-I Rag2 transgenic mice were purchased from Taconic. CCR2DTR 
mice51 were bred in-house. Mice were used in studies when 6–8 weeks old. All 
animal experiments were performed at the Vaccine Research Center at the National 
Institutes of Health (NIH) with the approval of the Institutional Animal Care and 
Use Committee at the NIH. Experiments complied with the ethical guidelines set 
by the Institutional Animal Care and Use Committee and animals were humanely 
killed at defined end points.

Generation of bone marrow chimeras. Eight-week-old recipient mice received 
13 Gy of γ-irradiation (2 doses of 6.5 Gy each) before IV reconstitution with bone 
marrow from CCR2DTR mice. Four to eight weeks after reconstitution, successful 
chimerism was assessed by flow cytometry. Mice were used in studies eight weeks 
after reconstitution.

In vivo depletions. For the cell depletion experiments using neutralizing 
antibodies, mice were injected with 200 µg per mouse of either anti-CD8β (clone 
53-5.8; Bio X Cell), anti-CD4 (clone GK1.5; Bio X Cell), anti-NK1.1 (clone PK136; 
Bio X Cell) and the respective isotype controls (Bio X Cell). For the cell depletion 
experiments in conditional knockout mice (Ccr2DTR), 10 ng g−1 body weight of 
diphtheria toxin were injected intraperitoneally on days −1, 1 and 3 relative to the 
time of vaccination.

Vaccines. SNP conjugate vaccines were produced as described previously11. Briefly, 
peptide antigens (GenScript) were linked to hydrophobic blocks containing 
imidazoquinoline-based TLR7/8a (Avidea Technologies) using a click chemistry 
reaction. For the pharmacokinetics studies, SNP conjugate vaccines were produced 
by linking Alexa Fluor 647 to hydrophobic blocks.

Immunizations and treatments. Vaccines were prepared in sterile PBS (Gibco) 
and administered subcutaneously to each footpad (50 µl per site) or intravenously 
via tail vein injection (200 μl). Animals were treated with 200 µg per mouse of 
anti-PD-L1 (10F.9G2; Bio X Cell) in 100 µl of PBS via intraperitoneal injection.

Cells. The MC38 cell line was a kind gift from L. Delamarre (Genentech). 
Working cell banks were generated immediately on receipt and used for the tumor 
experiments. Cells were tested regularly for Mycoplasma contamination and none 
tested positive throughout the studies.

Tumor implantation. MC38 tumor cells were cultured in complete DMEM 
(Gibco) supplemented with 10% heat-inactivated FCS (Atlanta Biologicals), 
100 U ml−1 penicillin, 100 µg ml−1 streptomycin (Gibco), 1 nonessential amino 
acids (GE Healthcare Life Sciences) and 1 mM sodium pyruvate (GE Healthcare 
Life Sciences). For each tumor implantation, a frozen cell aliquot was thawed 
and cultured in medium at 37 °C and 5% CO2, passaged once and collected 
using trypsin EDTA (Gibco). Then, 105 cells in sterile PBS per mouse were 
implanted subcutaneously on the right flank. Tumors were measured twice a week 
using digital calipers. Tumor volume was estimated using the formula: (tumor 
volume = short × short × long/2). Animals were killed when tumors reached the 
size criteria of 1,000 mm3.

Blood and tissue processing. Heparin-treated blood was collected and lysed 
with ACK lysis buffer (Quality Biological). Lungs, liver, kidneys and tumors were 
collected in digestion media containing Roswell Park Memorial Institute (RPMI) 
1640, 10% FCS, 50 U ml−1 DNase I (Sigma-Aldrich) and 0.2 mg ml−1 collagenase 
D (Sigma-Aldrich). Tissues were mechanically disrupted using the respective 
programs on the gentleMACS dissociator (Miltenyi Biotec) and incubated at 
37 °C for 30–45 min in a shaking incubator. Spleens were mechanically disrupted 
and lysed with ACK lysis buffer. Lymph nodes were mechanically disrupted in 
BioMasher tubes (Nippi). All single-cell suspensions were filtered through a 40-µm 
nylon mesh filter plate (Merck Millipore) or 70-µm cell strainer and resuspended 
in PBS for flow cytometry staining. For ex vivo cultures, cells were resuspended 
in RPMI 1640 medium (GE Healthcare Life Sciences) supplemented with 10% 
heat-inactivated FCS, L-Glutamine–Penicillin–Streptomycin (Sigma-Aldrich), 
nonessential amino acids, sodium pyruvate (HyClone), HEPES buffer (HyClone) 
and β-mercaptoethanol (Sigma-Aldrich).

Peptide restimulation. Cells were cultured in vitro with 2 µg ml−1 Reps1 peptide 
antigen (GenScript) and 2 µg ml−1 anti-CD28 (clone 37.51; BD Biosciences) for 6 h. 
Then, 10 µg ml−1 of brefeldin A (BD Biosciences) was added in the last 4 h.

Flow cytometry. For T cell tetramer analysis, cells were assessed for viability with 
LIVE/DEAD Fixable Blue Dead Cell Stain Kit (Invitrogen) in PBS containing 
50 nM dasatinib (STEMCELL Technologies) for 30 min at room temperature, 
washed and blocked with anti-CD16/CD32 (BD Biosciences). Cells were then 
stained with fluorescently conjugated Reps1 (H-2Db AQLANDVVL) tetramer in 
cell staining buffer (PBS and 2% FCS) containing dasatinib to enhance staining. 

Cells were simultaneously stained with the following surface antibodies to: CD8 
(clone 53-6.7), PD-1 (clone 29F.A12), CXCR3 (clone 173), CD62L (clone MEL-
14), Tim-3 (clone RMT3-23), CD44 (clone IM7), CD39 (clone Duha59), CD127 
(clone A7R34) and NKG2A (clone 16A11), purchased from BioLegend and CD4 
(clone RM4-4), KLRG1 (clone 2F1) and CD103 (clone M290) purchased from BD 
Biosciences. After a 1-h incubation at 4 °C, cells were washed twice in cell staining 
buffer, fixed and permeabilized using the transcription factor staining buffer set 
(eBioscience). Cells were stained overnight at 4 °C with the following intracellular 
antibodies to: CD3 (clone 17A2) and Ki-67 (clone Ki-67) from BioLegend, TCF1 
(clone C63D9) from Cell Signaling Technology, T-bet (clone O4-46) and granzyme 
B (clone GB11) from BD Biosciences and EOMES (clone Dan11mag) from 
Invitrogen.

For the intracellular cytokine analysis after peptide restimulation, cells were 
assessed for viability with the LIVE/DEAD Fixable Blue Dead Cell Stain Kit 
(Invitrogen) for 10 min at room temperature. Similar to the antibodies used in 
the tetramer analysis, cells were blocked with anti-FcR antibodies and stained 
with cell surface antibodies for 20 min at room temperature in cell staining buffer. 
Cells were fixed and permeabilized using Fix/Perm solution (BD Biosciences) 
and subsequently stained with intracellular antibodies to: CD3, IFN-γ (clone 
XMG1.2), IL-2 (clone JES6-5H4) and TNF (clone MP6-XT22) purchased from BD 
Biosciences.

For the mononuclear phagocyte uptake analysis, cells were assessed for 
viability with the LIVE/DEAD Fixable Blue Dead Cell Stain Kit for 10 min at room 
temperature. After FcR blocking, cells were stained with the following surface 
antibodies to: NK1.1, CD19 (clone 1D3), CD3 (clone 145-2C11), Ly6G (clone 
1A8), CD45 (clone 30-F11), Siglec-H (clone 440c), CD86 (clone GL1), CD11c 
(clone HL3), CD80 (clone 16-10A1), B220, CD64 (clone X54-5/7.1), CD11b and 
Ly6C (clone AL-21) purchased from BD Biosciences, CCR7 (clone 4B12), MHC 
class II (I-A/I-E, clone M5/114.15.2), CD169 (clone 3D6.112) and XCR1 (clone 
ZET) purchased from BioLegend, and CD172a (clone P84) from Thermo Fisher 
Scientific.

Cells were acquired on an LSRFortessa X50 (BD Biosciences) using the 
FACSDiva software v8.0.1 (BD Biosciences) and analyzed on the FlowJo software 
v10.6.1 (FlowJo LLC).

OT-I in vivo proliferation assay. Spleens and lymph nodes were collected from 
CD45.2 OT-I mice and labeled with Tag-it Violet Proliferation and Cell Tracking 
Dye (BioLegend) according to the manufacturer’s protocol. Labeled cells (2 × 106) 
were transferred via retro-orbital intravenous injection to each congenic CD45.1 
mouse at different time points after vaccination. Four days after transfer, spleens 
were collected from recipient mice for flow cytometry analysis.

In vivo imaging. Whole-body imaging of mice after immunization with Alexa 
Fluor 647-labeled vaccines was performed using the IVIS Spectrum In Vivo 
Imaging System (PerkinElmer).

Cell sorting for scRNA-seq. Spleens from mice vaccinated with SNP via SC or 
IV injections were collected 2 weeks after boost and processed into a single-cell 
suspension by mechanical dissociation. Splenocytes were stained with Reps1 
tetramer and hashtag antibodies (Total-Seq-C antibodies 1-5; BioLegend)52. CD8+ 
T cells were isolated by fluorescence-activated cell sorting into 1.5-ml Eppendorf 
tubes containing staining buffer (2% FCS/PBS). Up to 4 × 104 cells were sorted 
per mouse. Cells from mice in both treatment groups with distinct hashtags were 
mixed to form two pools with an aim for equivalent numbers of cells from each 
mouse. Each pool of cells was loaded in duplicate into a Chromium single cell 
sorting system (10x Genomics). Expression and hashtag library construction was 
performed by following the Chromium Single Cell VDJ Library protocol with a 
loading target of 1 × 104 cells per lane. The resulting four libraries were pooled 
before sequencing on a NovaSeq 6000 S1 chip.

Data processing for scRNA-seq. Raw sequencing files were aligned to the mouse 
mm10 genome using the Cell Ranger software v3.0.1 (10x Genomics). Hashtag 
data were added to each expression library using Seurat v.3.1 and demultiplexed 
using the HTODemux function. After demultiplexing, singlet cells identified by 
hashtag from each of the libraries were pooled into a single Seurat object. Cells 
were further filtered by excluding those with >5% mitochondrial genes in their 
library and fewer than 1,000 genes18; 19,368 cells remained after filtering and were 
used for the downstream analysis.

Downstream analysis of scRNA-seq data. Principal component analysis, UMAP 
for dimension reduction53, cell clustering (by the Leiden method), constructing 
a trajectory and pseudotime analyses54 were performed on unique molecular 
identifier counts using Monocle 3 (R package, v.0.2.1) (ref. 55). Analysis of DEGs 
and heatmaps were performed on the log-normalized data with Seurat (R package, 
v.3.1.4) (ref. 56). The differential expression among the clusters was tested using the 
nonparametric Wilcoxon rank-sum test followed by Bonferroni correction (using 
all features) to calculate the adjusted P values. Top DEGs were visualized using 
the SeqGeq software (FlowJo LLC). The SCENIC pipeline (R package, v.1.1.2.2) 
was used to construct and score gene regulatory networks (regulons) as described 
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previously34 Each regulon is composed of a transcription factor and its putative 
target genes. The output of SCENIC is a matrix of the activity of regulons, where 
rows correspond to regulons and columns correspond to cells.

TCR analysis of scRNA-seq data. TCR libraries were generated independently for 
all four 10x lanes according to the Chromium Single Cell VDJ Library protocol. 
Raw sequencing files were aligned to the mouse mm10 genome and annotated 
with their TCR genes by using the cellranger vdj function from the Cell Ranger 
software suite (10x Genomics). We excluded cells that did not have full-length 
or productive TCR-α (TRA) or TCR-β (TRB) gene pairs and those with multiple 
gene pairs (duplicates). Filtered TRA/TRB gene pairs were matched to the cells 
used for the gene expression analysis by 10x barcode and any TRA/TRB pair that 
was not present in our gene expression dataset was removed from further analysis. 
Clonotype was assigned based on the complementarity-determining region 3 
amino acid sequence of the TRA/TRB gene pair. Only clonotypes expressed by 
more than 100 cells were visualized in the heatmap.

ELISA. Serum from whole blood, spleens and popliteal lymph nodes was collected 
at specified time points after vaccination. Supernatants were collected from 
single-cell suspensions of spleens and lymph nodes that were cultured in vitro for 
12 h in complete RPMI 1640 at 37 °C. Commercially available ELISA kits were used 
to measure IL-12 subunit p40 (PeproTech) and all subtypes of IFN-α (PBL Assay 
Science) according to the manufacturer’s protocols.

Confocal microscopy. Spleens and popliteal lymph nodes were collected at the 
indicated times and prepared as described previously57. Briefly, tissues were fixed 
in periodate-lysine-paraformaldehyde buffer and placed in 30% sucrose in PBS. 
Tissues were then embedded in optimal cutting temperature medium (Electron 
Microscopy Sciences), frozen in dry ice-cooled isopentane and sections were cut 
on a cryostat (Leica Microsystems). Sections were blocked in 5% sera and stained 
with the following antibodies to: CD11b (clone M1/70; eBioscience), CD11c 
(clone N418; eBioscience), B220 (clone RA3-6B2; eBioscience), CD64 (polyclonal; 
R&D Systems), MHC complex II, followed by the relevant secondary antibodies 
conjugated to fluorophores. Images were acquired using a Leica SP8 microscope 
and analyzed with the Imaris software v9.5.0 (Bitplane).

Statistical analysis. All results are presented as the median with s.d. Statistics 
were assessed using a Kruskal–Wallis test with Dunn’s correction for multiple 
comparisons, two-way analysis of variance (ANOVA) with Bonferroni correction, 
log-rank test and Mann–Whitney U-test for immunogenicity (Prism; GraphPad 
Software v8.4.2).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon request. The scRNA-seq data have been uploaded to 
the Gene Expression Omnibus (accession number GSE158240).
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Extended Data Fig. 1 | Route and dose of SNP-7/8a immunization controls the magnitude and phenotype of antigen-specific CD8+ T cells. a, Whole 
blood was collected on day 21 to measure the frequency of tetramer+ CD8+ T cells post boost. Bar graphs summarize the frequency of tetramer+ CD8+ 
T cells from blood (n = 10). b, Bar graphs summarize the frequency of IFNγ+ CD8+ T cells from blood (n = 10) on day 21. c, Bar graphs summarize the 
frequency of IFNγ+ CD4+ T cells from blood (n = 10). d, Bar graphs show proportions of MPEC/SLEC subpopulations in the blood (n = 10). e, Frequency 
of MPECs is negatively correlated to frequency of tetramer+ CD8+ T cells. f, g, Bar graphs show proportions of PD-1/Tim-3 subpopulations in the blood 
(n = 10) of tetramer+ cells (f) or IFNγ+ cells (g). Data are representative of two independent experiments. The bars represent the median (a–c) or mean ± 
s.e.m. (d, f, g). Statistics were assessed by Kruskal-Wallis with Dunn’s correction for multiple comparisons (a, b, d, f, g) and Spearman correlation (e).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Intravenous administration of SNP-7/8a generates TCF1+ CD8+ T cells with anti-tumor capacity upon anti-PD-L1 treatment. a, 
Tumor growth curves of mice unvaccinated (black) or vaccinated with SNP-SC (blue) or SNP-IV (red) with (dotted line) or without α-PD-L1 (solid line) 
(n = 10). b, Flow cytometric analysis of single cells from spleen (concatenated, n = 6) after SNP-SC (top panel) or SNP-IV (bottom panel). Cells were 
stained with Reps1 tetramer and other antibodies. Numbers indicate percentage of cell population within the gate. c, Mice were vaccinated with SNP-
7/8a containing Reps1, E7, OVA or Trp1 antigens (n = 5). Spleens were collected 7 days post prime. d, Splenocytes were stained with tetramers specific 
for the respective antigens. Bar graph summarizes the frequencies of antigen-specific CD8+ T cells following SNP-SC (blue) or SNP-IV (red) (n = 5). e, 
Bar graph summarizes the frequencies of TCF1 subpopulations in the spleen (n = 5) after SNP-SC or SNP-IV. f, Frequency of TCF1+PD-1+ cells is negatively 
correlated to frequency of tetramer+ CD8+ T cells. g, Bar graph summarizes the frequencies of early effector cells (EEC, gray), memory precursor effector 
cells (MPEC, tan), double positive effector cells (DPEC, lilac) and short lived effector cells (SLEC, crimson) in the spleen (n = 5) after SNP-SC or SNP-IV. h, 
Frequency of MPEC is negatively correlated to frequency of tetramer+ CD8+ T cells. The bars represent mean ± s.e.m. (d,e,g). Statistics were assessed by 
Mann Whitney test (d, e, g) and Spearman correlation (f, h).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Single-cell analysis of neoAg+ CD8+ T cells by RNA sequencing identifies stem-like gene signature in SNP-IV and effector gene 
signature in SNP-SC cells. a, C57BL/6 mice (n = 5) were vaccinated subcutaneously or intravenously at 8 nmol on day 0 and day 14 with SNP-7/8a 
containing Reps1. Spleens were collected on day 28 and tetramer+ CD8+ T cells were sorted by flow cytometry. Flow plots show gating strategy for cell 
sorting. b, Mice were individually labeled with distinct hashtag oligo-tagged antibodies and pooled for 10x and RNA sequencing. Individual UMAPs show 
gene expression of each mouse vaccinated SC (left panel) or IV (right panel). c, Bar graph summarizes the frequency of the twelve Monocle 3 clusters that 
are represented by each vaccination route (n = 5). d, Density plots to identify stability states corresponding to higher density areas on UMAP, based on 2D 
kernel density estimation. e, Expression of top differentially expressed genes (DEG) of naïve cells are presented in meaning plots. f, Heatmap summarizes 
the number of cells that share a clonotype based on paired alpha and beta complementarity-determining region 3 (CDR3) sequences in each individual 
animal. g, Bar graph shows numbers of stem-like cells (clusters 2 and 4) and effector cells (clusters 1, 3, 5, 7 and 8) in each clonotype from SC or IV 
vaccinated mice. Only clonotypes expressed by more than 100 cells are represented in the graphs. h, Heatmap of DEG expressed in each cluster organized 
along the pseudotime trajectory.
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Extended Data Fig. 4 | Therapeutic vaccination with SNP-IV generates neoAg-specific CD8+ T cells with superior anti-tumor capacity. a, Tumor growth 
of mice treated with SNP-7/8a with (red) or without agonist (gray) (n = 10). b, Average tumor growth of SNP-IV (red), SNP-SC given twice (blue), once on 
day 7 (dotted blue) or twice at a lower dose (light blue) (n = 10). c, Total numbers of CD8+ T cells, CD4+ T cells and NK cells and d, frequency of tetramer+ 
CD8+ T cells from blood in mice treated with isotype control antibody (red) or blocking antibodies against CD8β (black), CD4 (blue) or NK1.1 (purple) 
as assessed by flow cytometry (n = 10). e–h, Spleens and tumors were harvested on day 14 (n = 10) and day 21 (spleen, n = 5; tumor, n = 3). e, Stem-like 
cells (TCF1+PD-1+; dark blue), f, effector cells (Granzyme B+TCF1–; orange) or g, exhausted cells (PD-1+Tim-3+) of tetramer+ cells were identified by flow 
cytometry. Bar graphs summarize the frequency of cells in the spleen and tumors on day 14 (filled bar) or day 21 (checked bar). h, Bar graphs summarize 
the frequency of Ki-67+ cells in different tissues on day 14 (red bar) or day 21 (checked bar) post SNP-IV. Data are representative of four independent 
experiments. Mean ± s.e.m. Statistics were assessed by two-way ANOVA with Bonferroni correction (a, b) and Mann Whitney test (e–h).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Transient vaccine distribution to spleen and activation of migratory cDC1 and moDC in after SNP-IV. a, Whole body images of 
mice following SNP-SC or SNP-IV with labeled vaccines. b, Confocal images of LN or spleen sections of an unvaccinated mouse. c, Confocal image of 
popliteal LN section post SNP-SC. Detailed overlay of additional markers. White, vaccine; red, ERTR7 (stroma); orange, CD11b (monocytes, macrophages 
or cDC2); CD11c (moDC or cDC). Scale bar, 200 µm or 50 µm (inset). Arrows show co-localization of vaccine and CD11b+CD11c+ cells. d, Gating strategy 
to identify various populations from popliteal LN and spleen after SNP-SC and SNP-IV: MoDC (red), monocytes (pink), subcapsular sinus macrophages, 
SCS (gray), red pulp macrophages, RPM (dark gray), cDC1 (maroon), cDC2 (coral). Kinetics of MNPs that are vaccine+ in e, popliteal LNs or f, spleens 
after SNP-SC or SNP-IV respectively (n = 3). g, Histograms show MFI of CD80, CD86, CCR7 and labeled vaccine in migratory or resident cDC1 or moDC 
in popliteal LN of naïve (gray) or SNP-SC mice after vaccination (concatenated, n = 3). h, i, Flow cytometric analysis of single cells stained with XCR1 and 
CD86 after gating on cDC1s in spleens or popliteal LNs of mice post SNP-IV or SNP-SC respectively (n = 3). Mean ± s.e.m. (i). Data are representative of 
two independent experiments.
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Extended Data Fig. 6 | Prolonged antigen presentation by DC drives CD8+ T cell responses after SNP-SC. a, WT, Batf3–/– or Ccr2–/– mice (n = 10) were 
vaccinated SC or IV at 8 nmol on day 0 and day 14 with SNP-7/8a (Reps1). b, Total number of cDC1 in spleen and popliteal LN, or monocytes in popliteal 
LN (right panel) of WT, Batf3–/– or Ccr2–/– were measured (n = 3). c, Bone marrow (BM) chimeras were performed by irradiating WT CD45.1 mice and 
transferring BM from Ccr2DTR or WT CD45.2 mice. After 8 weeks of reconstitution, mice were treated with DT (n = 3). d, Total number of monocytes, 
cDC1 and cDC2 in spleen of Ccr2DTR mice 24 h after DT treatment was measured (n = 3). e, Kinetics of neoAg-specific CD8+ T cell responses after SNP-IV 
in blood of Ccr2DTR without DT treatment, or WT CD45.2 BM chimera with or without prior DT treatment showed similar responses (n = 5). f, Sera were 
collected after SNP-SC (blue) or SNP-IV (red). IL-12 (left panel) or IFN-α (right panel) were measured by ELISA (n = 3). g, Total number of monocytes and 
cDC1 in popliteal LN of WT, Ifnar–/– or Tlr7–/– were measured by flow cytometry. h, Histograms of EOMES gated on tetramer+ cells post SNP-SC in WT or 
IL12b–/– mice (n = 4). Mean ± s.e.m. (e–g). Data are representative of two independent experiments. Statistics were assessed by Mann Whitney test (d) or 
Kruskal-Wallis with Dunn’s correction for multiple comparisons (g).
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