
Resource
Integrating population and
 single-cell variations in
vaccine responses identifies a naturally adjuvanted
human immune setpoint
Graphical abstract
P
R

R
 a

ct
iv

at
io

n

day 1 No adjuvant
day 1 AS03

NOXA
 BTG1

NOXA
 BTG1

subjects  time  cells

low
responder

AS03
Adjuvant

t0

t1

CITE-seq
High 
responders

Low 
responders

AS03 
Adjuvant

AS03
No AS03

ac
tiv

at
ion

differentiation

dd

FPR1 
 SCIMP
 CCR1 

FPR2 
 CGAS 
 P2RY13 

mDC CD14+ Mono

day 1 No adjuvant

High responder
baseline setpoint

Low responder 
baseline setpoint

CD14+ Mono & mDC states 
induced day 1 by AS03-adjuvant

day 1 AS03

Unadjuvanted high-responder baseline phenocopies responses induced by AS03 

t0    24h   t0    24h      pseudotime      age           F  M    

CD14
CD3

protein    time   adjuvant   cell state   age    sex 

G
en

e
A

G
en

e 
B

G
en

e 
C

G
en

e 
D

Multicellular correlation networks 
encode high responder setpoint

DC

high
responder

Elevated innate cell sensing signature

           

t0

t1

t0

t1

apoptosis

survival

No adjuvant group

Adjuvant group

High
responderss

Low
responders

No adjuvant groupoup

AS03
Adjuvant

Adjuvant groupp

CD14 +Mono 
Type I IFN
TLRs
FC receptors

mDC
IFN
DC receptors

AS03 adjuvant-specific effects

Human population & single cell integrationInfluenza vaccination cohorts
Highlights
d A framework for integrating human population and single-cell

immune response variations

d AS03 induces unique B cell survival and innate-sensing and

activation states

d Baseline immune setpoints are encoded as correlated

networks of cell states

d A high-responder baseline setpoint phenocopies cell states

induced by AS03
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In brief

Mulè et al. provide a framework for

integrating human population and single-

cell variations to study vaccine responses

with and without the adjuvant AS03. They

uncover AS03-specific B cell survival and

innate-sensing signatures 1 day after

vaccination. Furthermore, some AS03-

induced response cell states are already

present at baseline in "naturally

adjuvanted" individuals who respond

more robustly serologically to the

unadjuvanted vaccine.
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SUMMARY
Multimodal single-cell profiling methods can capture immune cell variations unfolding over time at the mo-
lecular, cellular, and population levels. Transforming these data into biological insights remains challenging.
Here, we introduce a framework to integrate variations at the human population and single-cell levels in vacci-
nation responses. Comparing responses following AS03-adjuvanted versus unadjuvanted influenza vaccines
with CITE-seq revealed AS03-specific early (day 1) response phenotypes, including a B cell signature of
elevated germinal center competition. A correlated network of cell-type-specific transcriptional states
defined the baseline immune status associated with high antibody responders to the unadjuvanted vaccine.
Certain innate subsets in the network appeared ‘‘naturally adjuvanted,’’ with transcriptional states resem-
bling those induced uniquely by AS03-adjuvanted vaccination. Consistently, CD14+ monocytes from high re-
sponders at baseline had elevated phospho-signaling responses to lipopolysaccharide stimulation. Our find-
ings link baseline immune setpoints to early vaccine responses, with positive implications for adjuvant
development and immune response engineering.
INTRODUCTION

Human immune systems exhibit substantial person-to-person

variation.1–4 Population variations in immune response out-

comes to the same perturbation, such as antibody responses

to vaccination, can be linked to cellular and molecular immune

system components using top-down systems biology ap-

proaches.4,5 Such unbiased immune profiling has identified

cellular and molecular signatures correlated with response out-

comes such as antigen-specific antibody or T cell levels,6–14

and has uncovered contributions from individual intrinsic factors,

such as genetics,15 age,16,17 and sex.18 Accumulating evidence

from these studies supports the hypothesis that immune system

status prior to a perturbation, beyond states linked to those

intrinsic variables, can predict and potentially determine both

response quality and quantity.6,16,19–23 For example, we previ-

ously identified transcriptional signatures reflecting an immune

system ‘‘setpoint’’ predictive of higher antibody response

following vaccination in healthy individuals22; the same signature
Immun
evaluated in lupus patients during disease remission was also

linked to later increases plasma cell-related transcriptomic

activity during disease flares. More recently, transcriptome-

based setpoint prognostic signatures have been defined in

healthy children prior to type 1 diabetes onset,24 in cancer pa-

tients at risk immunotherapy-induced autoimmunity25,26 and in

healthy recovered males following COVID-19 infection, which

shaped baseline immune status to impact influenza vaccination

responses.27

Although biomarker signatures identified thus far are informa-

tive, technological limitations hinder a holistic view of immune

cell processes underlying the immune setpoints that predict

and potentially determine optimal responses.28,29 Bulk blood

transcriptomic profiles are confounded by substantial inter-

individual variations in circulating immune cell subset fre-

quency,6,30,31 while flow cytometry alone cannot comprehen-

sively assess internal cell states captured by transcriptomics.

Single-cell transcriptomics can better resolve cell states but

does not fully utilize existing knowledge of surface protein
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Figure 1. Multimodal single-cell portraits of human vaccination responses

(A) Human vaccination response study outline; CITE-seq data were generated from n = 52 PBMC samples from n = 26 subjects including 2 response groups for

those who received the unadjuvanted vaccine and 2 vaccine formulations. Numbers in boxes indicate the number of samples run with CITE-seq. 10 high and 10

(legend continued on next page)
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markers defining immune cell types and subsets.6,30–32 Multi-

modal single-cell transcriptome and protein profiling methods

such as cellular indexing of transcriptomes and epitopes

sequencing (CITE-seq)33 are promising for unifying these modal-

ities. However, integrative analysis of timed perturbation re-

sponses, including decomposition of biological variations span-

ning multiple scales from individual human subjects to cell

types to single cells, remains a challenge. Biologically, we also still

lack understanding of how baseline immune states shape

response quality and quantity to perturbations such as vaccina-

tion and infection in humans.21,34 A better understanding of these

processes can inform vaccine and adjuvant development and im-

mune response engineering in health and disease.

In this work, we developed amultilevel modeling framework to

integrate human population, temporal, and single-cell variations.

We applied this framework to multimodal single-cell data to

quantitatively attribute cell-type-specific transcriptomic varia-

tions to age, sex, subject, time, and an adjuvant. Our data include

CITE-seq33 profiling of PBMCs from 26 healthy subjects before

and after vaccination with two different influenza vaccines: an

H5N1 vaccine formulated with the adjuvant AS03 (unpublished

data) and the 2009 pandemic (p2009) + seasonal trivalent inacti-

vated influenza (TIV) H1N1 influenza vaccine without adjuvant.

Application of our framework to these and additional validation

data revealed previously unknown, cell-type-specific pheno-

types specifically induced early by AS03.35 Comparative analysis

of AS03-specific signatures and the baseline setpoint predictors

of high antibody responses to the unadjuvanted vaccine revealed

that healthy, high responders have naturally adjuvanted baseline

states resembling those specifically induced by day 1 after AS03

vaccination. These observations were further supported by

in vitro cell stimulation experiments. Our integrative approach

paves the way for multiscale analysis of timed perturbation

studies using multimodal single-cell data in humans. Further-

more, our findings suggest cell-type-specific targets for immune

response engineering and vaccine development.

RESULTS

CITE-seq data deconvolve known immune response
signatures
To generate a multimodal single-cell dataset that captured bio-

logical variations spanningmolecular and cellular states, vaccine
low responders from the 2009 TIV + pandemic H1N1 influenza vaccinationwithout

and low responders, were also profiled with CITE-seq on days 1 and 7, respective

formulated with the adjuvant AS03 were profiled at baseline and day 1 post vacc

(B) The hierarchical structure of the data for a single cluster of cells is shown to mo

population and single-cell variations. Cell clusters (of ‘‘cell type’’) are defined base

shown). Clusters are represented by cells from PBMC samples indexed by ind

(unadjuvanted vs. adjuvanted) groups.

(C) For each of the 780 pseudobulk samples (columns) aggregated by surface p

protein expression is shown; color code for the cell types is the same as that us

(D) Top: the fraction of variance explained based on our multivariate mixed effects

within each colored columns of (C).

(E) Fraction of variance explained for five example genes from the multivariate mix

select genes (y axis) vs. the experimental factor (x axis) that explained the greates

75th percentiles. Shading represents the 95% confidence interval of the fitted lin

(F) Top: enrichment of pathways in the MSigDB Hallmark collection of gene sets b

positive association with age in CD8+ naive and CD161+ T cell clusters; bottom:

See also Figure S1.
formulations, inter- and intra-subject differences, and response

kinetics, we assessed 52 PBMC samples from 26 donors pre

and post vaccination using CITE-seq (Figure 1A). Subjects

received either the 2009 seasonal and pandemic H1N1 vaccine

combination without adjuvant or an H5N1 avian influenza vac-

cine formulated with an oil-in-emulsion adjuvant AS03.6,36 We

profiled both the baseline (before vaccination) and day 1 (post

vaccination) time points for the AS03 group since AS03 is known

to elicit a strong early response.37,38 For the unadjuvanted group,

we selected twenty subjects with high (n = 10) and low (n = 10)

antibody responses from our cohort of 63 individuals previously

stratified into high, mid, and low responders based on antibody

titer fold-change adjusted for age, sex, ethnicity, and pre-exist-

ing immunity.6,22 We profiled all 20 individuals at baseline and

a subset on days 1 or 7 post vaccination to assess early innate

and adaptive cellular responses (Figure 1A). We removed sour-

ces of technical noise in CITE-seq surface protein expression

data with our normalization method called dsb,39 then assessed

the robustness of CITE-seq to recover and unify known cell sur-

face and transcriptome phenotypes. For example, activated B

cells and plasmablasts could be distinguished based on expres-

sion of CITE-seq surface protein markers CD19, CD71, CD20,

and CD38. We further confirmed that gated subsets from

CITE-seq exhibited transcriptional signatures40 previously

derived from the same cell subsets after fluorescence-activated

cell sorting (FACS) (Figures S1A and S1B).

Cell type, individual, age, sex, and vaccination
contribute to cell-type-specific transcriptomic variation
Cells clustered using 82 surface proteins were enriched for

known immune phenotypes (Figures S1C and S1D). Cells

from each subject at different time points were represented

in a majority of clusters (Figures S1E and S1F). A minority of

clusters, including NKT and CD57+ CD4 T cells, were domi-

nated by cells from both time points from two to three individ-

uals, indicative of temporally stable phenotypes with relatively

low within-individual and high between-individual variations6

(Figure S1F).

Instead of analyzing one variable at a time, we next decon-

structed the transcriptional variation of each gene into that

attributable to cell types, individuals, intrinsic factors (age,

sex), and vaccination responses (Figure 1B) using multivariate

mixed effects models. For each gene, these models quantify
adjuvant were profiled. A subset of 8 and 12 subjects, split evenly between high

ly. In addition, 6 subjects vaccinated with a pandemic H5N1 influenza vaccine

ination.

tivate the multilevel mixed effects modeling approach for integration of human

d on surface protein expression (select proteins from the naive B cell cluster are

ividual, time point, and response (high and low responders) and vaccination

rotein-based cell type, individual, and time point, the median dsb normalized

ed in (D).

model; bottom: as in the top panel, but with models fit within each cell type, i.e.,

ed effects model fit within CD14+ monocytes; also shown are the expression of

t variance for these five genes. Boxplot notches indicate the median, 25th and

e.

ased on genes ranked by their variance explained by age; subset of genes with

select genes positively associated with age within the two cell types.
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Figure 2. Multilevel modeling reveals that unadjuvanted influenza vaccination induces both cell-type-specific and -independent transcrip-

tomic signatures
(A) Day 1 post-vaccination transcriptional response within cell types defined by surface protein expression. Gene set enrichment (orange, positive enrichment/

upregulation; black, negative enrichment/downregulation) based on genes ranked by their day 1 vs. day 0 effect size inferred using pseudobulk weighted linear

mixed effects models. Enriched pathways shown have adjusted p values < 0.05. The broad functional category of each curatedmodule/pathway is labeled on the

right margin; see also Table S1.

(B) Shared and cell-type-specific ISGs shown as combined leading-edge genes (rows) from the Reactome interferon signalingmodule. The day 1 log fold-change

of a subset of these genes with day 1 mixed model p values < 0.05 and fold-change > 0.25 is shown across all cell types included in the model; see also the core

interferon signature in Figures S2F and S2G.

(C) Log counts per million of aggregated data for each subject-time point combination (columns) within CD14+ monocytes. Leading-edge genes are shown from

the ‘‘interferon signaling’’ module enriched in CD14+ monocytes on day 1 post vaccination, revealing coordinated upregulation of interferon signaling genes

across individuals. Genes (rows) and samples (columns) were hierarchically clustered.

(D) Cells from baseline (day 0) and day 1 post vaccination were fed into the DDR-tree algorithm. Components 1 and 2 as shown are latent space embeddings

based onmRNA only for single monocytes as determined by the DDR-tree algorithm. Each point is a single cell colored by pseudotime as calculated bymonocle.

The distribution of cells from day 1 vs. from baseline (day 0) along latent component 1 is shown in the top histogram. Three branches are evident in this 2D

embedding space: the left, middle, and right branches are enriched for resting classical (CD14+ CD16�) monocytes, activated classical monocytes from post

vaccination, and non-classical (CD14� CD16+) monocytes, respectively. Cells in the rightmost branch progressively downregulate CD14 and upregulate CD16

(legend continued on next page)
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Please cite this article in press as: Mulè et al., Integrating population and single-cell variations in vaccine responses identifies a naturally adjuvanted
human immune setpoint, Immunity (2024), https://doi.org/10.1016/j.immuni.2024.04.009



ll
Resource
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contributions of biological factors (such as cell type or sex) to-

ward observed expression variation, including adjusting for de-

pendency among repeated measures from the same individuals

(see STAR Methods). Models were first fit to each transcript

across 780 transcriptome ‘‘pseudobulk’’ libraries indexed by

cell type, individual, and time point (Figure 1C, columns). Cell

type alone explainedmore than 30%of variation across the tran-

scriptome (range 0%–100%; Figure 1D, top) in these models,

consistent with observed cell-type-specific transcriptional

states.41,42 To assess contribution to transcriptional differences

within but independent of those across cell types, we next fit

models within cell subsets defined by surface protein expression

(Figure 1D, bottom). This analysis identified factors contributing

to differences within CD14+ classical monocytes; five example

genes are shown in Figure 1E. For example, as expected, sex

almost completely explained expression variation of a Y-linked

gene (DDX3Y). A transcription factor genetically linked to rheu-

matological pathology43 (PPARGC1B) and an apoptosis regu-

lator (TP53RK) were negatively and positively associated

with age, respectively. We also identified between-subject vari-

ations for many genes (Figure 1D, see ‘‘SubjectID’’); for example,

differences among individuals accounted for nearly 100% of

expression variation in TMEM176B, an inflammasome signaling

regulator,44 suggesting inflammasome function could have

substantial individuality in the human population (Figure 1E).

Temporal variation (i.e., differences relative to baseline following

vaccination) accounted for more than 50% of the expression dif-

ferences in STAT1; application of a methodologically different

differential expression statistical model confirmed vaccination-

induced expression of this gene within monocytes (see below).

Age contributions varied across cell subsets and were particu-

larly significant for CD8+ naive and CD8+ CD161+ T cells; inflam-

matory processes were specifically enriched among genes

positively correlated with age (Figure 1F), consistent with age-

associated sterile inflammation.45 Our approach provides a

global view of the extent by which different biological factors

contribute to gene expression variation. Variance decomposition

of all genes across and within each cell type is provided in

Tables S2 and S3, respectively.

CITE-seq reveals cell-type-specific early response
to unadjuvanted influenza vaccination
We next deconvolved, using CITE-seq data, known signatures

of vaccination response previously derived from bulk (whole

blood or PBMC) measurements to identify cell-type-specific

responses elicited by unadjuvanted influenza vaccination on

days 1 and 7. We utilized similar mixed effects models described

above to account for subject, age, sex, and technical factors (see

STAR Methods). Gene set enrichment analysis revealed day 7
protein levels along latent component 1; curves shown in the bottom were spline fi

were not used to construct the trajectory.

(E) Gene expression of select leading-edge genes from pathways enriched (2A) i

Category 1 genes are perturbed by vaccination with increased expression after v

denotes the peak of activation. Category 2 genes increase continually across p

monocytes. The top row shows example genes from each category. The bottom

hallmark mTORC1 signaling/hypoxia pathways and Reactome interferon signa

enriched in the subset of genes from each pathway and category are listed belo

See also Figure S2.
naive B cell and CD4+ memory T cell activation and metabolic

processes; though some of these effects were not significant

after false discovery rate (FDR) correction and were generally

weaker than early response effects described below

(Figures S2A and S2B). Changes in circulating plasmablast fre-

quencies are thought to drive whole blood transcriptome signa-

turesmeasured on days 7–12 post vaccination predictive of anti-

body response to multiple vaccines.6–8,46 Indeed, via CITE-seq,

plasmablasts (CD38high CD20� B cells) had the highest average

day 7 expression of genes we compiled based on previous day 7

bulk transcriptome signatures predictive of antibody responses

(Figure S2C). B cell maturation antigen (BCMA) receptor

(TNFRSF17) had the highest day 7-fold-change in bulk microar-

ray and pseudobulk CITE-seq data (Figure S2D). Deconvolution

of CITE-seq sequencing reads to each cell type revealed that

almost all TNFRSF17 counts were derived from CD38high

CD20� plasmablasts on day 7, and not from naive or memory

B cells (Figure S2E).

Unadjuvanted influenza vaccination response studies consis-

tently report interferon-stimulated gene (ISG) expression

1–3 days post vaccination in bulk blood transcriptomic data.

Elevated expression of ISG and antigen presentation genes on

day 1 was found to correlate with elevated antibody response,11

although the cellular origins of such signatures were not fully

resolved. Early reports profiling sorted cell subsets suggested

ISG expression originated primarily from DCs on day 347 or

monocyte/granulocytes on day 1.13 Here, unbiased CITE-seq

assessment using curated gene sets, including signatures from

bulk transcriptomic studies (Table S1), identified three broad

patterns of responses 24 h following vaccination. The first

pattern included genes shared across cell types enriched for

type I and type II interferon (IFN) signaling pathways (Figure 2A).

46 ‘‘core genes’’ collectively induced in at least 5 cell types (Fig-

ure S2F), included transcription factors IRF1 (notably, induced

across 15 cell types), STAT1, IRF7, IRF9, pattern recognition re-

ceptor (PRR) genes IFITM1 and IFITM3, inhibitors of vial tran-

scription GBP148 and ISG15,49 and antigen presentation

genes TAP1 and PSMB9 (Figure S2F). The second pattern en-

compassed responses unique to classical (CD14+ CD16�) and
non-classical (CD14� CD16+) monocytes, including adhesion

molecule ICAM1 and JAK2, antigen presentation and human

leukocyte antigen (HLA) genes, and inhibitors of viral replication

OAS350 and ISG2051 (Figure S2G). The third pattern reflected

classical monocyte-specific responses, particularly inflamma-

tory processes induced by vaccination (Figure S2G). The ‘‘Reac-

tome IFN signaling’’ genes (Figure 2A) captured all three

response patterns, with 10–15 ISGs shared across multiple cell

types, including those shared by classical and non-classical

monocytes, and a set of classical monocyte-specific genes
ts to normalized levels for CD14 and CD16 (see STARMethods); protein levels

n CD14+ monocytes along pseudotime shows two broad categories of genes.

accination in classical monocytes—the dashed line at pseudotime value of 9.5

seudotime and have their highest expression in CD16+ CD14� non-classical

row shows the subset of genes falling into each category from the combined

ling pathways. Gene Ontology (GO) biological process and KEGG pathways

w. Shading represents the 95% confidence interval of the fitted line.

Immunity 57, 1–17, May 14, 2024 5



M
ono

D
C

0 1 2 3

reactome interferon signaling
LI.M4.3 myeloid receptors and transporters

LI.M194 TBA
 * LI.M37.0 immune activation

 * LI.M118.0 enriched in monocytes (IV)
LI.M67 activated dendritic cells

LI.M169 mitosis (TF motif CCAATNNSNNNGCG)
 * LI.M127 type I interferon response

 * LI.M118.1 enriched in monocytes (surface)
 * LI.S4 Monocyte surface signature

 * LI.M4.0 cell cycle and transcription
 * LI.M11.0 enriched in monocytes (II)

 * LI.M16 TLR and inflammatory signaling
 * IFN I DCACT

 * IFN Sig (SLE)

LI.M177.0 TBA
 * reactome DNA replication

 * reactome cell cycle checkpoints
 * reactome mitosis M G1 phase

reactome apoptotic extrinsic pathway
LI.M4.3 myeloid receptors and transporters

LI.M194 TBA
 * reactome M G1 transition

 * reactome APC C CDC20 degradation of mitotic proteins
 * reactome CDC20 APC C degradation late mitosis early G1

 * reactome autodegradation of CDH1 by APC C
 * reactome cross presentation of exogenous antigen

 * reactome VIF APOBEC3G
 * LI.M4.0 cell cycle and transcription

 * LI.M11.0 enriched in monocytes (II)

Normalized Enrichment Score

cohort

validation

CITE seq

log10(padj)

4

8

12

16

R = 0.56, p = 0.038
2

1

0

1

1 0 1
B cell apoptosis signature fold change

C
D

40
 A

ct
iv

at
io

n 
si

gn
at

ur
e 

fo
ld

 c
ha

ng
e

Naive B cells

R = 0.54, p = 0.0098

0

200

400

600

2000 4000 6000
Day 42 Antibody Binding (RU) 

 Heterologous H5N1 strain (Vietnam)

D
ay

 4
2 

A
nt

ib
od

y 
B

in
di

ng
 (

R
U

) 
va

cc
in

e 
H

5N
1 

st
ra

in
 (

In
do

ne
si

a)

A

E F G H

mDC

B C
CD14+ Monocytes

cell sorting

RNA-seq

AS03 specific phenotype CITE-seq discovery cohort AS03 specific validation cohort                        Defining adjuvant-specific effects

CITE-seq

no
adjuvant AS03

ba
se

lin
e

da
y

1

ba
se

lin
e

da
y

1

D

Define AS03 effect:

rank genes

Pathway
enrichment

Fit mixed model
within cell type

AS03 adjuvanted
unadjuvanted

AS03 adjuvanted subjects

FPR1 CCR1 P2RY13 SCIMP

d0
 N

o
AS03

d1
 N

o
AS03

d0
 A

S03

d1
 A

S03

d0
 N

o
AS03

d1
 N

o
AS03

d0
 A

S03

d1
 A

S03

d0
 N

o
AS03

d1
 N

o
AS03

d0
 A

S03

d1
 A

S03

d0
 N

o
AS03

d1
 N

o
AS03

d0
 A

S03

d1
 A

S03

4

5

6

7

4

5

6

7

4

5

6

4

5

6

7
lo

g 
C

P
M

CGAS FPR2 P2RY13 IFIT3

d0
 N

o
AS03

d1
 N

o
AS03

d0
 A

S03

d1
 A

S03

d0
 N

o
AS03

d1
 N

o
AS03

d0
 A

S03

d1
 A

S03

d0
 N

o
AS03

d1
 N

o
AS03

d0
 A

S03

d1
 A

S03

d0
 N

o
AS03

d1
 N

o
AS03

d0
 A

S03

d1
 A

S03

2

4

6

5.0

5.5

6.0

6.5

3.0

3.5

4.0

4.5

5.0

3.0

3.5

4.0

4.5

lo
g 

C
P

M

BCL2

BTG2

BTG1
PMAIP1 (NOXA)

4

0

4

3 2 1 0 1 2

Difference in day 1 log fold change
AS03 vs unadjuvanted

M
ix

ed
 m

od
el

 c
on

tr
as

t 
 s

ta
nd

ar
di

ze
d 

z 
st

at
is

tic

Naive B cells
BTG1 NOXA (PMAIP1)

d0
 N

o
AS03

d1
 N

o
AS03

d0
 A

S03

d1
 A

S03

d0
 N

o
AS03

d1
 N

o
AS03

d0
 A

S03

d1
 A

S03

6

7

8

11.00

11.25

11.50

lo
g 

C
P

M

Figure 3. AS03 induces apoptosis suppression signatures in naive B cells and innate-sensing signatures in mDCs and CD14+ monocytes

(A) Schematic illustrating the approach we used to define AS03 adjuvant-specific response phenotypes within cell types. Left: unadjuvanted vaccinees were

compared with those receiving the H5N1 + AS03-adjuvanted vaccine; surface protein-based cell types are the same as those used in Figure 2; all cells were

clustered together for cell type annotation. Middle: data from Howard et al.60 comparing vaccination with H5N1 + AS03 vs. H5N1 + PBS (control); cell subsets

including total T cells, B cells, monocytes, and DCswere sorted based on surface protein markers using FACS followed by RNA sequencing (RNA-seq) analysis at

baseline and day 1 following vaccination. Right: statistical contrast/comparison performedwithin each cell type—genes were fit using amixed effectsmodel, and

the difference in the day 1 fold-change between the AS03-adjuvanted and unadjuvanted groups was calculated within each cell type and visualizedwith boxplots.

Genes were then ranked for gene set enrichment analysis using the effect size of the above contrast that captured AS03-specific responses: gene modules with

positive enrichment had higher day 1 fold-change in the AS03 group compared with the group who received the unadjuvanted vaccine.

(B) Gene set enrichment of genes ranked by the procedure outlined in (A) in classical monocytes and mDCs. Results from the CITE-seq data are shown in blue,

and those from the validation cohort are in green. All modules/pathways with adjusted p values < 0.05 in the CITE-seq cohort are shown. Pathways with the same

direction of enrichment and adjusted p value < 0.01 in the validation cohort are highlighted with an asterisk.

(C) The distribution of log counts per million from aggregated CITE-seq data for each subject showing example genes with AS03-specific responses in CD14+

monocytes. Boxplot notches show the median, 25th and 75th percentiles. Individual gene statistics were calculated from the mixed effects model contrast (see

(legend continued on next page)
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(Figure 2B). The expression of these genes within classical

monocytes alone could cluster samples by time relative to vacci-

nation, suggesting their coordinated induction across individuals

after vaccination (Figure 2C).

Inflammatory activation following vaccination was particularly

apparent in classical monocytes, such as increases in the level

of transcripts in the ‘‘IL6 production’’ pathway, including

MYD88, DDX-58 (RIG-I), tumor necrosis factor (TNF), and

TRAF6, as well as elevated level of interleukin (IL)-15 and CCL2

transcripts52 (Figure S2G). Hypoxia and mTORC1 signaling

pathway genes were also enriched in classical monocytes (Fig-

ure 2A). AlthoughmTOR activity can be subverted to support viral

replication,53 in the context of vaccination, our observation likely

reflects the role of mTOR in immune cell activation and inflamma-

tion.54 Indeed, the genes driving this enrichment signal pointed to

mTOR-dependent glycolyticmetabolism, a process induced after

varicella-zoster virus (VZV) vaccination55 and linked to antigen

nonspecific innate memory in monocytes.56 The mTOR pathway

enrichment within CD25+ CD4+ effector T cells, MAIT-like cells,

mDCs, and natural killer (NK) cellsmay have beenmediatedpartly

by IL-15 frommonocytes in response to the vaccine (Figure S2G),

e.g., IL-15 is known to activatemTOR inNKcells.57 Unadjuvanted

influenza vaccine response signatures, including leading-edge

driver genes for gene set enrichments, are provided in Table S4.

Integration with pseudotime latent space delineates
cellular activation versus differentiation in early
vaccination responses
We next explored how time-associated response signatures

from our statistical models could be coupled to ‘‘bottom-up’’

computational inference of transcriptional dynamics induced

by vaccination in single cells. By using single monocytes from

days 0 and 1 samples, we derived a pseudotime, tree-based

latent cell-phenotype space by using a ‘‘reversed graph embed-

ding’’ algorithm58,59 (Figure 2D). CD14 and CD16 surface protein

expression patterns identified enrichment of monocyte subsets

at the ‘‘leaves’’ of the three tree branches (Figure 2D, bottom

margin): pre-vaccination classical monocytes along the left

branch, their day 1 counterparts in the top branch, and non-clas-

sical monocytes from both pre and post vaccination in the right

branch. Integrating the monocyte-specific vaccination response
STAR Methods): CGAS (also known as MB21D1) standardized z: 3.53, p value 4

4.93, p value 8.13e�7; IFIT3 standardized z: 3.32, p value 8.92e�4. Note mixed

random effects that are not captured by these boxplots of the log counts per mi

Outliers and lines connecting longitudinal samples from the same subjects not s

(D) As in (C), but in mDCs: FPR1 standardized z 2.47, p value 0.013; CCR1 standar

standardized z 3.74, p value 1.88e�4.

(E) Mixed effect modeling results in naive B cells. x axis: difference between AS0

between days 1 and d0 (baseline); y axis: standardized z statistics of the contrast a

genes from the apoptosis signature are highlighted, each with AS03-specific d

dardized z: �5.35, p value: 5.35e�9).

(F) Boxplot as described in (C) showing the expression distribution of BTG1 and

naive B cells before and after vaccination.

(G) Scatterplot showing the correlation between the day 1 fold-change in the C

correlation shown; shading represents the 95% confidence interval of the linear

(H) Scatterplot showing the correlation between antibody avidity to the heterolog

H5N1 HA) measured by surface plasmon resonance assay on day 42 post vaccin

represents the 95% confidence interval of the linear fit.

See also Figure S3.
phenotypes from the mixed effects models above (Figure 2A)

with this latent space embedding identified two categories of

genes based on branch-dependent differential expression (see

STAR Methods). Category 1 genes mainly reflected vaccine

perturbation effects within CD14+ monocytes (e.g., CCL2),

although some were changed in both CD14+ and CD16+ mono-

cytes (e.g., TNFSF10) (Figure 2E, top row). Category 2 genes

(e.g., IFITM2 and FCERG1) captured differences and potential

differentiation between classical and non-classical monocytes

as these genes continuously increased along pseudotime with

higher expression in non-classical monocytes, even though

vaccination appeared not to induce cellular differentiation be-

tween these two subsets (Figure 2E, top row). IFN response

genes (Figure 2C) mostly belonged to category 1 (more than 40

genes), except for PTPN1, IFITM2, IFITM3, HLA-C, and

EIF4E2, which belonged to category 2. Among genes induced

by vaccination in the mTOR and hypoxia pathways, those that

belonged to category 2 were enriched for glycolysis processes,

while those in category 1 were enriched for ER stress (Figure 2E,

bottom). Integrating statistical models defining day 1 changes

following vaccination (‘‘real time’’) and single-cell ‘‘pseudotime’’

delineates cellular activation in response to vaccination versus

differences between classical and non-classical monocytes.

AS03 induces specific innate sensing and naive B cell
anti-apoptosis signatures
We next examined early responses attributable to the adjuvant

AS03. AS03 is known to elicit �5- to 10-fold greater increases in

magnitude and also increased diversity of anti-influenza anti-

bodies comparedwith unadjuvanted vaccines, evenwhen formu-

latedwith a relatively lowantigen dose.35 Previous studies of tran-

scriptional responses to AS03-adjuvanted vaccines revealed

strong early induction of ISGs in innate immune cells35,37,38,60

compared with antigen-only controls. To define early immune

response signatures induced specifically by AS03-adjuvanted

H5N1 vs. unadjuvanted influenza vaccination, we used similar

mixed effects models as above and applied a statistical contrast

defining the difference in change from baseline to day 1 between

the two vaccines. We further validated these signatures using a

publicly available dataset obtained from an independent cohort

profiling the transcriptomes of FACS-sorted, major immune cell
.23e�4; FPR2 standardized z: 5.45, p value 4.95e�8; P2RY13 standardized z:

effects model statistics incorporate observation level weights, covariates, and

llion, which are used here only for visualization and confirmation of the effect.

hown to avoid clutter in the visualization.

dized z 2.40, p value 0.016; P2RY13 standardized z 3.24, p value 0.001; SCIMP

3-adjuvanted and unadjuvanted vaccination in terms of their log fold-change

ssessing the same difference using the fitted fixed effect model. Leading-edge

ownregulation (NOXA standardized z: �6.57, p value: 4.92e�11; BTG1 stan-

PMAIP1 (NOXA) in log counts per million of aggregated CITE-seq data within

D40 activation score and the apoptosis signature in naive B cells. Pearson

fit.

ous strain (x axis, H5N1 Vietnam HA) vs. the vaccine strain (y axis, Indonesia

ation in subjects receiving AS03 adjuvant. Pearson correlation shown; shading
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Figure 4. A network of correlated cell-type-specific transcriptional states defines the baseline status of high responders to the unadjuvanted

vaccine

(A) Identification of the multicellular baseline high-responder setpoint network. Pathways enriched pre vaccination (baseline) in high vs. low responders within

each cell type; genes were ranked using multivariate models adjusting for age, sex, and batch. Leading-edge genes from each cell-type-specific high-responder

pathway were correlated across donors within and between cell types. The Jaccard similarity of each pairwise leading-edge gene was subtracted from the

Spearman correlation coefficient to correct for correlation due to two signals sharing the same genes only for signals within the same cell type. High connectivity

edges were retained in the network (see STAR Methods).

(B andC) Two example highly connected cell phenotypes in the high-responder setpoint network. The edges highlighted in red are shown below as correlations of

the activity of the leading-edge genes from thosemodules across donors within the cell type indicated by the edge. Correlation values reflect Bonferroni adjusted

Spearman correlation of phenotypes across the entire network. The size of each vertex (circle size) represents the number of significant connections with that

specific signal.

(legend continued on next page)
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types (e.g., total B and T cells) of subjects who received the same

H5N1 vaccine formulatedwith either AS03 or PBS, the latter as an

unadjuvanted control60 (Figures 3A and S3A). This analysis re-

vealed positive enrichment of several biological processes more

specific to AS03-adjuvanted responses, e.g., those involving sur-

face receptors in monocytes and mDCs (Figure 3B, blue; see

schematic in Figure S3A); these were highly concordant with

data from similar innate cell subsets in the validation cohort (Fig-

ure 3B, green). The leading-edgegenesdriving theseenrichments

include receptors recognizing pathogen classes beyond the spe-

cific molecular patterns in the vaccine, suggesting AS03 broadly

expands the capacity of cells to sense environmental signals.

For example, Toll-like receptor (TLR) genes recognizing both bac-

terial (e.g., TLR1) and viral molecular patterns (e.g., TLR8) were

among the leading-edge genes driving the enrichment of module

‘‘M16’’ in CD14+ monocytes, as was FPR2, which can induce

chemotaxis in response to bacterial metabolites61 and cyclic

GMP-AMP synthase (CGAS), a cytosolic DNA sensor that acti-

vates antiviral responses62 (Figure 3C). In classical monocytes,

three IFN-related pathways were induced by AS03 (Figure 3B);

as expected, enrichment of these IFN-related signals was not

AS03 specific; it reflected ISG increases beyond the levels seen

after unadjuvanted vaccination, as exemplified by IFIT3 (Fig-

ure 3C). Within mDCs, a similar pattern of innate cell surface re-

ceptorswas captured by the enrichment ofmodule ‘‘M11’’ genes,

which include inflammatory chemotaxis genes such as FPR161

and CCR1,63 and the proinflammatory TLR adaptor SCIMP. As

in CD14+ monocytes, AS03-specific upregulation of P2RY13, an

ADP sensor active during inflammation,64 was also evident in

mDCs (Figures 3C and 3D). These observations together suggest

that AS03 can enhance the capacity of myeloid cells to sense

environmental signals.

Lymphocyte responses by as early as day 1 following vaccina-

tion are less well appreciated. We detected a signature sugges-

tive of apoptosis suppression in naive B cells in subjects

vaccinated with AS03; this signature included AS03-specific

downregulation of genes related to apoptosis including BCL2,

BTG2, and NOXA (PMAIP1) 24 h post vaccination (Figures 3E,

S3B, and S3C). Further examination of genes with the largest

post-vaccination changes in naive B cells revealed an AS03-spe-

cific decrease in expression of BTG1, a canonical pro-apoptotic

gene. This gene regulates a checkpoint in B cells undergoing

germinal center (GC) selection; loss of BTG1 in mice resulted in

‘‘supercompetitor’’ B cells that outcompete their wild-type coun-

terparts within the GC, resulting in aggressive GC-derived lym-

phomas.65 Similarly, B cells from NOXA�/� mice outcompeted

wild-type cells for entry into the GC following influenza vaccina-

tion and infection; these cells persisted longer due to inefficient
(D) The correlation of signature expression within cell types (x axis) with the day

activity that we previously found was predictive of antibody response.

(E) Post-vaccination kinetics of select high-responder setpoint network compon

high vs. low responders was used to estimate the baseline high vs. low responde

adjusting for age, sex, cells per donor, and a random effect for donor ID. Bars re

(F) Assessing baseline high- vs. low-responder signatures in early (1 day after vacc

0 (dose 1) and day 22 vs. day 21 (dose 2) responses of genes in the baseline high-r

seq data (GEO:GSE171964) obtained from vaccinees. The change of day 1 vs. bas

effect with a subject random effect as in E above). The difference in the fold-chang

p = 0.59, CD14 monocyte p < 0.001. Bars represent 95% confidence intervals o

See also Figure S4.
apoptosis66 and thus increased the diversity of anti-influenza an-

tibodies.66 As we and others have shown earlier, AS03 can

induce antibodies against influenza clades beyond those in the

vaccine.35,36 Naive B cells of humans after vaccination with

AS03 may thus resemble those in NOXA�/� mice after influenza

vaccination. Naive B cells from subjects vaccinated with AS03

also appeared more activated based on increased expression

of genes linked to CD40 activation,67,68 and the fold-change in

the CD40 activation signature score (day 1/day 0) was negatively

correlated with that of an apoptosis signature score in naive B

cells (Figure 3G). Both the apoptosis and CD40 activation signa-

tures had consistent directions of change, although apoptosis

signature downregulation was not significant in sorted total B

cells (pooled naive and memory) in the validation cohort (Fig-

ure S3D). Together, these observations suggest that AS03 may

function also to suppress apoptosis in naive B lymphocytes early

after vaccination to prolong their survival and subsequent activa-

tion. The potential increase in the diversity of the naiveB cell pool,

presumably with varying specificity to vaccine antigens, may

help increase the diversity of the subsequent B cell response.

The antibody avidity on day 42 against theH5N1 strain in the vac-

cine was also correlated with that against the non-vaccine strain

(Figure 3H), supporting the hypothesis that AS03 may broaden

the antibody response by increasing the size of the initial B cell

pool available for the GC reaction. Together, our observations

highlight two potential mechanisms by which AS03 may drive

more robust antibody responses: (1) activation of broad innate-

sensing pathways not limited to those specific to the molecular

patterns present in the vaccine, and (2) suppression of apoptosis

in naive B cells to increase the diversity of naive B cells entering

GC reaction with potential positive impacts on antibody

response breadth. Detailed information on AS03-specific signa-

tures is provided in Table S4.

Comparing baseline predictive signatures and AS03-
specific early responses reveals naturally adjuvanted
baseline immune setpoints
We previously described a baseline immune setpoint signature

involving multiple cell types predictive of antibody responses

to vaccination in healthy individuals and plasma cell-associated

disease activity in lupus patients.22 However, we had focused on

a single class of signatures discovered earlier6 and did not

assess how baseline immune status is linked with transcriptional

and cellular responses early after vaccination. Here, we first per-

formed unbiasedmultivariate analysis of CITE-seq data to define

baseline immune cell phenotypes associated with antibody

response to unadjuvanted vaccination. To understand how

baseline phenotypes associated with high responders in
7 fold-change in microarray data of a signature associated with plasmablast

ents. A single-cell mixed effects model of module activity of genes elevated in

r effect size (red) and subsequent day 1 fold-change across subjects (orange),

present 95% confidence intervals of the estimated marginal means.

ination) responses to COVID-19 mRNA vaccination (BNT162b2). Day 1 vs. day

esponder phenotype tested inmonocytes and DCsmanually gated using CITE-

eline was statistically significant for both cell types (p < 0.001 based on amixed

e between boost (day 22 vs. day 21) and prime (day 1 vs. day 0) p values: mDC

f the estimated marginal means.
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different cell subsets relate to one another, we used correlation

network analysis to reveal that lymphocyte and innate-immune

cell phenotypes comprising baseline predictive signatures could

be grouped into several functional categories based on their cor-

relation across individuals. Together, 81 baseline setpoint phe-

notypes (i.e., cell type-gene set combinations) associated with

high responders together formed a correlated network of cell-

type-specific transcriptional phenotypes (Figures 4A and S4A;

Table S4). Interestingly, consistent with the AS03-associated

day 1 responses, some phenotypes (or ‘‘nodes’’) that exhibited

‘‘hub’’-like properties tended to reflect elevated innate cell sur-

face receptor expression in CD14+ monocytes and ISG expres-

sion in CD16+ non-classical monocytes at baseline (Figure S4B;

see examples highlighted in Figures 4B and 4C). Within CD14+

monocytes, signature genes include Fc receptor genes (e.g.,

FCGR3A, FCGR1A, and FCGR2A), regulators of cytoskeletal

reorganization active during phagocytosis (e.g., PAK1, ARPC5,

CFL1, and ARF6), and second messenger signaling molecules

(PIP5K1A, PIK3CD, AKT1, MAPK12, and ARPC2). The expres-

sion of these signature genes in classical monocytes was corre-

lated with 27 cell phenotypes coordinately elevated in high re-

sponders (adjusted p < 0.05) (Figure 4B), including antigen

presentation genes in naive B cells and ISGs in CD16+ mono-

cytes (Figure 4B, bottom). ISG expression was also elevated in

high responders in a variety of other cell types, including

CD161+ CD3+ CD4� CD8� T cells (referred to hereafter as

‘‘MAIT-like’’) (Figure 4C, bottom), within which IFITM1, IFITM2,

ISG15, and IFI6 drove the enrichment of IFN pathways. These

baseline phenotypes were also significantly correlated with the

day 7 plasmablast signature score in blood (Figure 4D), which

predicted antibody responses. Correlated transcriptional pheno-

types at baseline, both within and across cell types, are thus

associated with the extent of day 7 plasmablast and subsequent

antibody increases following vaccination.

Given the resemblance of the baseline setpoint network to

the innate signatures induced early following unadjuvanted

(without AS03) vaccination (see Figure 2A), we next asked
AS03-adjuvanted vaccinated individuals. As in Figure 3B, distributions are sho

(B) and (C).

(B) Assessing the AS03 signatures we derived via gene set enrichment analysis

responses on day 1 evaluated in analogous cell types.

(C) Gene set enrichment of the AS03 signatures from (B) (after refinement using

sponders to the unadjuvanted influenza vaccine in mDC and CD14monocyte at b

adjuvanted vaccination are enriched among the genes with increased expressio

genes in the leading edge of the high vs. low responder enrichment are shown in

(D) Log cell frequency of HLA-DR+ classical monocytes (obtained from flow cyt

sponders at baseline, p value from a Wilcoxon rank test. Boxplot notches indica

(E) The frequency of HLA-DR+ classical monocytes plotted as a function of time p

(t1, day 1; t7, day 7; and t70, day 70 post vaccination). Shown below are results fro

Day 1 vs. day 0 change in the high-responder group: effect size 3.17, p value = 0.0

in estimated marginal day 1 vs. baseline fold-change is not statistically significa

estimated marginal means.

(F) Schematic outlining CyTOF stimulation experiment. PBMCs isolated from high

phenotype and markers driving stimulation were defined using HDStIM.71

(G) UMAP plot of a random subset of 5,000 monocytes pre and post-stimulation

(H) Variable importance for individual phospho-protein markers used for automa

(I) The post-stimulation median marker intensity of phosphorylated signaling m

shown due to variable baseline phospho-marker detection. Stimulation effects w

variation with a random effect for donor ID. The difference in pre- vs. post-stimulat

contrast effect: 0.104, p = 0.058, pCREB contrast effect: 0.223, p = 0.024, pERK
whether specific phenotypes comprising the high-responder

setpoint network were induced by vaccination. Indeed, statisti-

cal modeling revealed that certain baseline phenotypes elevated

in high responders (to the unadjuvanted vaccine) were induced

early (day 1) after vaccination in a cell-type-specific manner

(Figure 4E). Thus, the baseline immune state of high vaccine re-

sponders may mirror early inflammatory responses induced by

vaccination to potentially prime early innate responses. Further

supporting this idea, aggregated baseline signatures in mono-

cytes and mDCs associated with high responders were also

induced 1 day after either dose of BNT162b2 mRNA severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vacci-

nation,69 with greater elevation after the second dose in both cell

types (Figure 4F). Given that the lipid nanoparticle carrier in the

mRNA vaccine is thought to act as an adjuvant,70 these results

further suggest that our baseline setpoint signatures might

have reflected a naturally adjuvanted state that can enhance

innate immune response potential prior to stimulation.

To further test the naturally adjuvanted baseline hypothesis, we

refined aggregated transcriptome signatures specific to early re-

sponses following AS03 in classical monocytes and mDCs. For

each cell type, we took the union of leading-edge genes driving

the individual gene set enrichments shown in Figure 3B; to prune

genes that may not be AS03 specific, we removed the three ISG-

relatedmodules inducedbybothAS03and theunadjuvantedvac-

cine in classical monocytes. This process resulted in two aggre-

gated AS03-specific early response signatures, one for each cell

type. In aggregate, these genes decreased rather than increased

after unadjuvanted influenza vaccination, further demonstrating

their AS03 specificity (Figure 5A). We next further refined the sig-

natures by assessing their enrichment in analogous subsets from

the validation cohort60 using the same contrast approach used

above (seeFigure3A).Aggregatesignatureswere significantlyen-

riched (specific to AS03 vs. the PBS control) post vaccination in

the validation cohort; we therefore used the leading-edge genes

driving the enrichments as our validated AS03-specific CD14+

monocyte and mDC vaccination signatures (Figure 5B).
wn for visualization; statistical analysis with multivariate models is shown in

in the validation cohort comparing H5N1 + AS03 vs. H5N1 + PBS vaccination

signal from the validation data; see STAR Methods and A) in high vs. low re-

aseline. Refined AS03 signatures induced specifically on day 1 following AS03-

n in high vs. low responders after adjusting for age, sex, and batch. Specific

the box on the right.

ometry data) as a percentage of total classical monocytes in high vs. low re-

te the median, 25th and 75th percentiles.

oints: two baseline time points (t01, t02) and three time points after vaccination

m amixed effects model with an interaction term for time and response group.

005; in the low responder group: effect size 1.89, p value = 0.14. The difference

nt between the two groups. Bars represent 95% confidence intervals of the

and low responders were stimulated with lipopolysaccharide (LPS). Stimulation

with stimulated cells in orange and unstimulated cells in blue.

tic determination of responding cells reported by HDStIM

arkers within the CD14+ monocyte cluster-post-stimulation aggregated data

ere tested using a mixed model adjusting for batch and modeling individual

ion fold-changes in high vs. low responders contrast estimate and p values: p38

contrast effect: 0.58, p = 0.055.
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We tested these AS03-specific signatures in a cell-type-spe-

cific manner at baseline in high versus the low responders to

the unadjuvanted influenza vaccine. Indeed, each signature

was significantly higher in high responders within the corre-

sponding cell type (Figure 5C; Table S1). Thus, innate cell sub-

sets from high responders at baseline resembled AS03-specific

day 1 post-vaccination response signatures. An earlier study

identified increased frequency of activated HLA-DR+monocytes

1 day after vaccination.9 Consistently, here the high responders

to the unadjuvanted vaccination already had elevated frequency

of HLA-DR+monocytes6 at baseline (Figure 5D). Furthermore, by

day 1 post vaccination, the frequency of these HLA-DR+ mono-

cyte increasedmore in high responders (effect size 3.17 for day 1

vs. day 0, p = 0.0005) than low responders (1.89, p = 0.14,

respectively) (Figure 5E). Thus, both transcriptional and cell fre-

quency analyses support the conclusion that the baseline im-

mune status of high responders corresponds to a naturally adju-

vanted innate immune cell state that mirrors not only the early

responses induced by both the unadjuvanted and adjuvanted

vaccines (e.g., high ISG status) but also those specifically elicited

by the adjuvant AS03.

The naturally adjuvanted baseline state may partly reflect cell-

intrinsic response capacity to innate immune cell stimulation. To

evaluate this hypothesis, we stimulated pre-vaccination PBMCs

from the same 10 high and 10 low unadjuvanted vaccine re-

sponders ex vivo with IFN alpha, PMA plus ionomycin, and lipo-

polysaccharide (LPS). We then tested phosphorylation signaling

responses 15min after stimulation to assess whether certain cell

subsets were intrinsically more responsive in transducing these

external stimulatory signals (Figure 5F). We used cytometry-

by-time-of-flight (CyTOF) for cell surface protein and intracellular

phosphorylation-based signaling readouts and defined the re-

sponding cell populations and associated response markers

with a computational algorithm we developed called HDStIM72

(Figures 5G and 5H). As expected, CD14+monocytes responded

strongly to LPS, as evident by increased phosphorylated p38,

CREB, IkBa, and ERK (Figure 5H). The difference in the post

LPS-stimulation fold-change of p38, pERK, and pCREB was

elevated to a greater extent in high compared with low re-

sponders at this early time point (Figure 5I), thus supporting

the idea that the naturally adjuvanted baseline set point state re-

flected elevated cell-intrinsic signaling response capacity. This

TLR-dependent increase in the signaling capacity suggests

that high responders are poised to mount a stronger response

to stimulatory signals from the vaccine, thus resulting in higher

downstream transcriptional outputs such as ISGs in both mono-

cytes and DCs, which in turn could trigger autocrine/paracrine

circuits to further amplify the response.73,74 Together, these ob-

servations provide additional insights into the mechanistic un-

derpinnings of a naturally adjuvanted human immune setpoint.

DISCUSSION

Here, we introduce a framework for integrating human popula-

tion variation with multimodal single-cell variation capturing

cellular states before and after a perturbation. Analysis of sin-

gle-cell data often relies on qualitative visualization75 and univar-

iate analysis, which are inadequate for more complex experi-

ment designs with many samples.76 By contrast, multilevel
12 Immunity 57, 1–17, May 14, 2024
models provide a quantitativemeans to integrate human and sin-

gle-cell variations to generate new hypotheses and biological in-

sights. Our approach provides a robust framework for complex

experimental designs, as exemplified by our CITE-seq data

with longitudinal samples from multiple individuals nested into

three groups defined by vaccine formulation and responder sta-

tus. Our analyses revealed novel cell-type-specific phenotypes

specifically induced by AS03,35 including a naive B cell survival

signature emerged 1 day after vaccination, suggesting mecha-

nisms by which the AS03 adjuvant may help expand the re-

sponding B cell and antibody repertoire.

In addition, we unbiasedly defined the landscape of baseline

immune phenotypes linked to high antibody responses to an un-

adjuvanted influenza vaccine, demonstrating that such baseline

states do not merely reflect the phenotypes of a single-cell type

but capture a correlated set of phenotypes across multiple cell

types, as we had previously shown for a specific baseline signa-

ture predictive of antibody responses to vaccination.22 Further-

more, comparing the baseline cell-type-specific predictors of

unadjuvanted vaccine responses with phenotypes induced spe-

cifically by the unadjuvanted influenza vaccine, the COVID-19

mRNA vaccine, or the AS03-adjuvanted H5N1 vaccine revealed

that high responders to the unadjuvanted vaccine appear to be

naturally adjuvanted at baseline. This concept was further

buttressed by data comparing phosphoprotein signaling re-

sponses to in vitro TLR stimulation of baseline cells from high

vs. low vaccine responders. These findings advance the concept

that modulating baseline setpoints may improve immune

response outcomes in diverse contexts.21 For example, states

of clinical immune suppression, e.g., after transplantation or

chemotherapy, could be tuned to phenocopy the naturally adju-

vanted state we identified in innate immune cells to enhance

future vaccination or immunotherapy outcomes.

A host of approaches can be used to tune immune setpoints,

including vaccination itself. BCG vaccination has been known to

confer nonspecific protection (i.e., not just against TB) and

reduce all-cause mortality in infants77; it has also been shown

to potentiate nonspecific secondary innate immune cell re-

sponses in mice.78 Phase III human trials evaluating BCG vacci-

nation as a nonspecific immunomodulator showed promise in

protection against respiratory infections in the elderly,79 who

tend to be immunosuppressed.45 Future work could quantify

the degree to which the naturally adjuvanted phenotype we

describe here may relate to innate immune potentiation

conferred by BCG vaccination,80,81 which has been often attrib-

uted to chromatin remodeling.82 In addition, programming the

persistence of the naturally adjuvanted baseline setpoint could

also be evaluated.

Evaluation of larger cohorts using similar multimodal single-

cell approaches will help assess the generalizability of the

naturally adjuvanted state we uncovered. In general and sup-

porting our findings, data from multiple vaccination studies re-

vealed substantial inter-subject variation in baseline immune

states1,2,6,83 and a meta-analysis of multiple influenza vaccine

studies using blood transcriptomic data revealed an ‘‘inflamma-

tory signaling’’ module predictive of antibody response in sub-

jects under the age of 65.16 More recent work, based on analysis

across different vaccination cohorts, similarly revealed that indi-

viduals with an elevated ‘‘inflammation’’ bulk transcriptomic
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phenotype tended to have better antibody responses.23 How

age-related inflammation, generally associated with poorer

vaccine responses, is similar to or distinct from such baseline in-

flammatory states is less clear. Earlier work suggests tonic IFN

signals in the young are distinct from age-related inflammation

related to TNF signaling and its downstream effects.84,85 Our

work provides a framework for future studies to further assess

these signatures and concepts at the cell population and sin-

gle-cell levels.

Limitations of the study
Our study has several limitations. Our comparison of the adju-

vanted response with the unadjuvanted response involved

different antigens (H5N1 vs. seasonal + 2009pH1N1, respec-

tively). However, we validated signals in an external cohort

comparing vaccines with the same H5N1 antigen formulated

with AS03 versus a PBS control; additionally, current evi-

dence86,87 indicates that the H5 antigen-only vaccines have

lower (e.g., tens of folds lower in geometric mean36) and less du-

rable antibody titers than AS03-adjuvanted formulations (e.g.,

Link et al.60 and our own data [unpublished data]36). An earlier

report comparing bulk transcriptomic responses of several AS

adjuvant formulations with the hepatitis B antigen38 also re-

vealed that AS03 induced stronger innate responses, though

the bulk transcriptomic data could not pinpoint cell-type-specific

responses as we had analyzed here. Together, these data sug-

gest the H5N1 antigen itself has low immunogenicity,36 and the

highly immunogenic responses we observed with the AS03-ad-

juvanted vaccine were due to the adjuvant and not the antigen.

Profiling blood alone omits cells and processes occurring in tis-

sues. Although logistically and clinically more challenging, as-

sessing tissues such as lymph nodeswould give amore compre-

hensive picture of vaccination response variations across

individuals, as recent pioneering work using fine needle aspi-

rates or biopsies from lymph nodes had shown.88–90 For

example, our single-cell deconvolution of a day 7 bulk transcrip-

tomic signature predictive of antibody responses confirmed that

it originated exclusively from a small number of plasmablast

cells. Circulating plasmablasts were shown to share B cell re-

ceptor sequences with those obtained from lymph node bi-

opsies91; thus, the whole blood plasmablast transcriptional sig-

natures often detected post vaccination most likely originate

from lymph nodes, as expected and supported by our results.

Determining the tissue origin of the innate immune cells in circu-

lation on day 1 and their connection to circulating cells ‘‘encod-

ing’’ the naturally adjuvanted baseline states remains an open

question. Given that monocytes have relatively short half-life,

the dynamics and status of the myeloid progenitors need to be

considered and may hold a key to linking immune cell status in

the bone marrow and shorter-lived circulating cells in blood.

Tracking the clonal origins of innate immune cells lacking vari-

able receptor sequences (like in B/T lymphocytes) in humans

presents a major challenge. However, recent developments in

mitochondrial DNA mutation profiling using single-cell ATAC-

seq data could be informative in this context.92 Another open

issue is the origin of the naturally adjuvanted baseline immune

state within individuals—what sets the setpoint? Our recent

work suggests prior infections can modulate baseline states in

humans; months after clinical recovery from mild COVID-19
men andwomen had a temporally stable but altered baseline im-

mune state compared with matching controls, and men tended

to mount more robust innate and adaptive responses to the sea-

sonal influenza vaccine.27 Futurework could assesswhether and

how the monocyte and DC naturally adjuvanted phenotypes

overlap with those stably modified by prior infections in the

same cells. Finally, vaccination itself, including BCG and, as

recently described, influenza vaccination with adjuvants93 or

even without advjuants (unpublished data), can also potentially

modulate baseline immune states.
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R., Tibshirani, R.J., and Davis, M.M. (2014). Systems analysis of sex dif-

ferences reveals an immunosuppressive role for testosterone in the

response to influenza vaccination. Proc. Natl. Acad. Sci. USA 111,

869–874. https://doi.org/10.1073/pnas.1321060111.

19. Fourati, S., Cristescu, R., Loboda, A., Talla, A., Filali, A., Railkar, R.,

Schaeffer, A.K., Favre, D., Gagnon, D., Peretz, Y., et al. (2016). Pre-vacci-

nation inflammation and B-cell signalling predict age-related hypores-

ponse to hepatitis B vaccination. Nat. Commun. 7, 10369. https://doi.

org/10.1038/ncomms10369.

20. Moncunill, G., Carnes, J., Chad Young, W.C., Carpp, L., De Rosa, S.,

Campo, J.J., Nhabomba, A., Mpina, M., Jairoce, C., Finak, G., et al.

(2022). Transcriptional correlates of malaria in RTS,S/AS01-vaccinated

African children: A matched case-control study. eLife 11, 1–30. https://

doi.org/10.7554/eLife.70393.

21. Tsang, J.S., Dobaño, C., VanDamme, P., Moncunill, G., Marchant, A.,

Othman, R.B., Sadarangani, M., Koff, W.C., and Kollmann, T.R. (2020).

Improving Vaccine-Induced Immunity: Can Baseline Predict Outcome?

Trends Immunol. 41, 457–465. https://doi.org/10.1016/j.it.2020.04.001.

22. Kotliarov, Y., Sparks, R., Martins, A.J., Mulè, M.P., Lu, Y., Goswami, M.,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

TotalSeq-A Custom human antibody panel Biolegend See Table S5

CyTOF custom human antibody panel Biolegend, Fluidigm, Novus Biology

Biological samples

Human PBMC samples NIH Protocol 09-H-0239 NA

Human PBMC samples NIH Protocol 12-H-0103 NA

Critical commercial assays

Chromium V2 library construction kit 10x Genomics PN-120237

Hiseq 2500 cluster kit V4 Illumina GD-401-4001

Deposited data

Raw and analyzed data This paper https://doi.org/10.5281/zenodo.10546916

Bulk RNAseq of cell subsets from validation

cohort

Howard et al.60 Supplemental Table 3 from Howard et al.60

CITE-seq of PBMCs from individuals

vaccinated with BNT162b2 mRNA vaccine

Arunachalam et al.69 GEO: GSE171964

Software and algorithms

Analysis Code (and full list of R packages used) This paper https://github.com/niaid/fsc

scglmmr This paper https://github.com/MattPM/scglmmr

dsb Mulè et al.39 https://github.com/niaid/dsb

R (versions 3.5.3, 4.0.5) The R foundation https://www.r-project.org

tidyverse (versions 1.2.1, 1.3.0) Wickham et al.94 https://www.tidyverse.org

lme4 (1.1-26) Bates et al.95 https://CRAN.R-project.org/package=lme4

emmeans (1.5.4) The Comprehensive R Archive Network https://CRAN.R-project.org/package=emmeans

limma (3.46.0) Ritchie et al.96 https://bioconductor.org/packages/release/

bioc/html/limma.html

fgsea version 1.24.0 Korotkevich et al.97 https://bioconductor.org/packages/release/

bioc/html/fgsea.html

HDStIM (0.1.0) Farmer et al.71 https://niaid.github.io/HDStIM/

Seurat (versions 2.3.4, 4.0.1) Butler et al.98 https://CRAN.R-project.org/package=Seurat

monocle (2.10.1) Qiu et al.59 https://bioconductor.org/packages/release/

bioc/html/monocle.html

CellRanger 10x Genomics https://support.10xgenomics.com/single-cell-

gene-expression/software/downloads/3.1/

Multiseq McGinnis et al.99 https://github.com/chris-mcginnis-ucsf/MULTI-

seq

Demuxlet Kang et al.100 https://github.com/statgen/demuxlet

Igraph The Comprehensive R Archive Network https://CRAN.R-project.org/package=igraph
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, John S.

Tang (john.tsang@yale.edu).

Materials availability
This study did not generate new reagents.
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Data and code availability
d This paper analyzes existing, publicly available data. These data are included in the data repository below and accession

numbers for the datasets are also listed in the key resources table.

d Code to replicate all analysis in this paper and create all figures is available in the following repository: https://github.com/

NIAID/fsc. Additional preprocessing code, and the raw and processed data used in this study are available in multiple formats

to facilitate reuse and reanalysis in R, python or other programming languages including standard text files, anndata, hdf5 and

Seurat objects at: https://doi.org/10.5281/zenodo.10546916.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND PARTICIPANT DETAILS

Human vaccination comparison cohorts and antibody response assessment
Healthy volunteers were enrolled on the National Institutes of Health (NIH) protocols 09-H-0239 (Clinicaltrials.gov: NCT01191853)

and 12-H-0103 (www.clinicaltrials.gov: NCT01578317). The trials were approved and monitored by NIH institutional review boards

in accordance with the Declaration of Helsinki and all subjects provided informed consent. Subjects enrolled in 09-H-0239 received

the 2009 seasonal influenza vaccine (Novartis), and the 2009 H1N1 pandemic (Sanofi-Aventis) vaccines, both without an adjuvant.

Subjects in 12-H-0103 received a vaccine formulated with the adjuvant AS03 containing avian influenza strain H5N1 A/Indonesia/05/

2005 (GSK). In both cohorts, virus neutralizing antibody titers assessed using a microneutralization assay were determined as pre-

viously reported. The highest titer that suppressed virus replication was determined for each strain in the 2009 inactivated influenza

vaccine: A/California/07/2009 [H1N1pdm09], H1N1 A/Brisbane/59/07, H3N2 A/Uruguay/716/07, and B/Brisbane/60/2001 or for

AS03 adjuvanted influenza vaccine, H5N1A/Indonesia, clade 2.1. High and low antibody responders to the unadjuvanted vaccination

were defined using the adjusted maximum fold change (AdjMFC) which adjusts the fold change for the baseline antibody titer (meth-

odological details in the supplementary methods of our previous report6). In the unadjuvanted cohort, n=10 high responders and

n=10 low responders were selected for CITE-seq profiling. All subjects were analyzed pre–vaccination, with a subset of 8 and 12

donors profiled on days 1 and 7 post-vaccination also split evenly between high and low responders. In the adjuvant cohort, n=6

subjects with robust titer responses were selected for CITE-seq. Detailed subject level metadata are provided in Table S6.

METHOD DETAILS

CITE-seq profiling of peripheral blood mononuclear cells
We optimized a custom CITE-seq antibody panel of 87 markers using titration experiments and stained cells with a concentration of

antibody which appeared to saturate ligand of the cell population with the highest marker expression, or used themanufacturers rec-

ommended concentration when below saturation. We stained the 52 PBMC samples across three experimental batches using ali-

quots of a single pool of antibodies which were combined in the optimal concentration and concentrated in an Amicon Ultra

0.5mL centrifugal filter by spinning at 14,000 x g for 5 minutes. Three aliquots of 12mL from the 36mL volume of optimized antibody

mixture was used on 3 subsequent days to minimize between experiment technical variability. Frozen PBMC vials from each donor

were washed in pre-warmed RPMI with 10% FBS followed by PBS. 1x106 cells from each sample were stained with a hashing anti-

body101 simultaneously with 1mL FC receptor blocking reagent for 10 minutes on ice. After washing the hashing reaction 3 times in

cold PBS, cells were counted and pooled in equal ratios into a single tube and mixed. The sample pool was concentrated to 5x106

cells in 88mL of staining buffer. 12mL of the concentrated optimized 87 antibody panel was added to stain cells (total reaction volume

100mL) for 30 mins on ice. After washing cells, we diluted cells to 1400 cells / mL, recounted 4 aliquots of cells and 30mL of the stained

barcoded cell pool containing cells from all donors was partitioned across 6 lanes of the 10XGenomics ChromiumController for each

of the 3 batches for 18 total lanes. We proceeded with library prep for the 10X Genomics Chromium V2 chemistry according to the

manufacturer’s specifications with additional steps to recover ADT and HTO libraries during SPRI bead purification as outlined in the

publicly available CITE-seq protocol (https://cite-seq.com) version 2018-02-12. We clustered Illumina HiSeq 2500 flow cells with V4

reagents with pooled RNA, ADT and HTO libraries in a 40:9:1 ratio (20mL RNA, 4.5 mL ADT, 0.5mL HTO). Libraries were sequenced

using the Illumina HiSeq 2500 with v4 reagents. CITE-seq antibody information is provided in Table S5.

CITE-seq data sequence alignment and sample demultiplexing
Bcl2fastq version 2.20 (Illumina) was used to demultiplex sequencing data. Cell Ranger version 3.0.1 (10x Genomics) was used for

alignment (using the Hg19 annotation file provided by 10x Genomics) and counting UMIs. The fraction of reads mapped to the

genome was above 90% for all lanes and sequencing saturation was typically around 90%. ADT and HTO alignment and UMI count-

ing was done using CITE-seq-Count version 1.4.2. We retained the ‘‘raw’’ output file fromCell Ranger containing all possible 10X cell

barcodes for each 10X lane, and merged the CITE-seq-count output. For each 10X lane, barcodes were concatenated with a string

denoting the lane of origin and data for ADT, HTO and mRNA. We then utilized combined sample demultiplexing to assign the donor

ID and timepoint to each single cell. Both the timepoint and response class were identifiable based on the hashing antibody. The first

round of demultiplexing was carried out via cell hashing antibodies. The union of singlets defined by the multiseq deMUTIplex pro-

cedure99 and Seurat’s HTODemux function were retained for further QC. Negative drops identified by HTODemux were retained for
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further QC and use in denoising and normalizing protein data. The second round of sample demultiplexing was carried out via De-

muxlet100 to assign the unique donor ID by cross-referencing unique SNPs detected in mRNA single cell data against a vcf file with

non-imputed illumina chip based genotype data from the same donors. Demuxlet provided an additional round of doublet removal via

an orthogonal assay (mRNA) to antibody barcode (HTO) based demultiplexing thus providing further data QC. Only cells that met the

following conditions were retained for further downstream QC, normalization and analysis: 1) The cell must be defined as a ‘‘singlet’’

by antibody barcode based demultiplexing and by demuxlet. 2) The identified donor from demuxlet must match one of the expected

donors based on cell hashing. Cells were then further QCd based on mRNA using calculateQCmetrics function in scater.102 Cells

were removed that had with greater or less than 3.5 median absolute deviations from the median log mRNA library size.

CyTOF profiling of phospho-signaling responses after stimulation of high and low responder baseline PBMCs
Samples were thawed in a 37�Cwater bath and washed twice with warmed complete media with Universal Nuclease (Pierce) added.

Cells were then washed a final time and resuspended in complete media. 1 million cells per condition were added to individual wells

and rested in a tissue culture incubator for 2 hours (37�C, 5% CO2). Samples were then stimulated with either PMA/Ionomycin (final

concentration [10 ng/mL])/([1mg/mL]); Sigma-Aldrich), LPS (final concentration [1mg/mL]; Sigma-Aldrich), IFN-a (final concentration

[10,000U/ml], PBL Assay Science), or left unstimulated. After 15 minutes at 37�C, samples were fixed with paraformaldehyde

(2.2% PFA final concentration) for 10 minutes at 25�C. Samples were washed twice with Maxpar Barcode Perm Buffer (1X concen-

tration; Standard Biotools). Samples were then barcoded with Cell-ID 20-Plex Pd Barcoding Kit (Standard Biotools) and incubated at

25�C for 30 minutes. Samples were then washed twice with Maxpar Cell Staining Buffer (Standard Biotools) and combined into cor-

responding barcoded batches of 5 samples (4 conditions per sample) andwashed a final time withMaxpar Cell Staining Buffer. Sam-

ples were then stained with a titrated antibody-panel for extracellular markers (Table S5) for 30 minutes at 25�C. After staining, the
cells were washed twice with Maxpar Cell Staining Buffer and permeabilized in methanol (Fisher Scientific) overnight at -80�C. The
next day, samples were washed twice withMaxpar Cell Staining Buffer, and stained with a titrated panel of antibodies for intracellular

signaling markers (Table S5) at 25�C for 30 minutes. Samples were then washed twice with Maxpar Cell Staining Buffer, and labeled

with Cell-ID Intercalator Ir ([1:2000] in Maxpar Fix-Perm Buffer; Standard Biotools) overnight at 4�C. The following day, samples were

washed twice with Maxpar Cell Staining Buffer and resuspended in 500mL freezing media (90% FBS (Atlanta Biologicals) + 10%

DMSO (Sigma-Aldrich)), and stored at -80�C until acquisition. The day of acquisition, samples were thawed and washed twice

with Maxpar Cell Staining Buffer and then once with Cell Acquisition Solution (Standard Biotools) before being resuspended in

Cell Acquisition Solution supplemented with 10% EQ Four Element Calibration Beads at a concentration of 6 x 105 cells/mL (to

approximate 300 events/sec). Samples were acquired on the Helios system (Standard Biotools) using a WB Injector (Standard Bio-

tools). After acquisition, samples were normalized and debarcoded using the CyTOF Software’s debarcoder and normalization tools

(Standard Biotools). The panel and protocol were adapted for use at CHI from the Stanford HIMC.103 CyTOF antibody information is

provided in Table S5.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details on the statistical testing / modeling are listed below and values reported associated with each figure are reported in the figure

legend or results section text. Analysis described below was carried out with the R statistical language using base R and tidyverse

collection of packages.94

Surface protein and mRNA count data normalization
We denoised and normalized ADT data using an open source R package we developed for this work called dsb39 which removes

noise derived from ambient unbound antibodies and cell to cell technical noise. We used the function DSBNormalizeProtein with

default parameters. We normalized mRNA on the entire dataset with the normalizeSCE and multiBatchNorm functions from scran104

using library size-based size factors. Various analysis utilized aggregatedmRNAdatawhichwaswere separately normalized for anal-

ysis at the subset level as a ‘‘pseudobulk’’ library; single cell mRNA data were also renormalized or rescaled for specific analysis as

outlined below.

Surface protein-based clustering and cell type annotation
Using protein to define cell type facilitated improved interpretation of transcriptome differences between vaccination groups. Cell

types were defined with statistically independent information, protein, from transcriptome data being modeled within each cell

type (Figures 1A and 1B). We clustered cells directly on a distance matrix using the parallelDist package calculated from the non-

isotype-control proteins all cells using Seurat’s FindClusters function98 using parameters: res =1.2, modularity.fxn = 1, algorithm =

3 (SLM105). We annotated cell types in the resulting clusters post hoc, based on canonical protein expression in immune cell pop-

ulations. This procedure improved separation of known immune populations compared to compressing protein data using principal

components as commonly done for higher dimensional mRNA data (data not shown). Analysis of unadjuvanted vaccination re-

sponses was first done blind to the adjuvanted cohort data. We thus first applied high dimensional clustering of the unadjuvanted

cohort and annotated cell types with additional manual gates to purify canonical cell populations such as memory and naı̈ve

T cells. We next merged unadjuvanted and adjuvanted cohort cells and used annotations to guide combined clustering annotation,

again manually refining cell populations using biaxial gating scripts in R to purify cell some cell populations. For annotation, the
e3 Immunity 57, 1–17.e1–e7, May 14, 2024
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distribution of marker expression within and between clusters was compared using density histogram distributions of marker expres-

sion across clusters at the single cell level, biaxial marker distribution and median and mean aggregated protein expression across

clusters.

Hierarchical transcriptome variance deconstruction to infer individual (subject intrinsic), cell type, and vaccine
effects
To estimate the contribution of subject intrinsic and contributors to the observed variation in expression of each gene within specific

cell clusters/subsets, we used the variancePartition package.106 The set of models used for estimating variance fractions are distinct

from but related to those used for testing differential expression and contrast vaccination effects within cell subsets (see below). We

first aggregated data across individual, timepoint and cell type. The normalized aggregated expression was used to first model the

mean variance relationship using observation level weights using voom.107 Mixed effects linear models of the expression of each

gene across the aggregated libraries were then fitted using lme495 with variancePartition. For each gene ‘‘y’’ the total variance

was defined by 780 measurements derived from the 52 PBMC samples deconvolved into the 15 major protein-based cell clus-

ters/types tested. The model fit to each gene ‘‘g’’ was:

g =
X

j

Xjbj +
X

k

Zkak + εg

Where X and Z are the matrices of fixed and varying / random effects respectively, with random effects modeled with a Gaussian

distribution and errors incorporating observation level weights.

ak � N
�
0;s2

a

�

εg � N
�
0;diag

�
wg

�
s2
ε

�

The variancePartition package then incorporates both fixed and random effects in calculating the fraction of variation attributable

to each variable in the model. For example, the variance in g attributable to ‘‘subjectID’’ (i.e., differences between individuals) was

modeled as a random effect is:

s2
gSubjectID =

s2
bSubjectIDP

j

s2
bj
+
P
k

s2
ak

+s2
e

The denominator in the fraction above is the total variance of gene g, with both fixed and random effects contributing to total vari-

ance. In the first model above, age, sex, subjectID, timepoint, response /vaccine group (unadjuvanted group high vs low responders,

or AS03 group) cell type, and a cell type and timepoint interaction term as categorical random effect variables as required by the

variancePartition framework. As expected, a second set of models fit within each cell type/cluster (i.e., without having cell type as

a variable in the model) increased the apparent variance explained by the other factors given that major cell type specific expression

was a key factor driving gene expression variation. This model included age, sex, subjectID, timepoint, and response / vaccine group

(as above) and an interaction term for time and group.

Within cell type linear mixed effect models of vaccination effects on gene expression
We used mixed effects linear mixed models to test coherent effects of vaccination across individuals while adjusting for subject

intrinsic factors including age and sex and estimating individual subject level variation. Gene expression counts were aggregated

within each surface protein-based cell type by summing counts within each sample. The lowest frequency cell types without repre-

sentation across some individuals and time relative to vaccination (e.g., HSCs, donor-specific cell types, or plasmablasts which were

mainly detected on day 7) were excluded from this specific analysis. Three main analyses were carried out to model gene expression

within each cell type to estimate the following vaccination effects over time across individuals: model 1) unadjuvanted subjects day 1

vs baseline, model 2) unadjuvanted subjects day 7 vs baseline, model 3) A contrast of the difference in day 1 fold change between

unadjuvanted and adjuvanted subjects in a combined model – the goal of this model is to assess adjuvant specific response effects.

All models were fit with the ’dream’ method108 which incorporates precision weights107 in a mixed effects linear model fit using

lme4.95 For models 1 and 2 above (unadjuvanted vaccination effects) we fit the following model: gene � 0 + time + age + sex +

(1|subjectID).

The fitted value for expression y of each gene g corresponds to:

yg = b0g +
X

j

Xjbj + εg

With variables time, age, and sex represented by covariate matrix X. The b0 term corresponds to the varying intercept for each

donor represented by the (1|subjectID) term. This model thus estimates the baseline expression variation across subjects S0 around
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the average g0 using a Gaussian distribution with standard deviation tg
2 to shrink estimated vaccination effects toward the popula-

tion mean and adjust for non-independence of repeated measures from the same individuals, as follows:

b0g = g0 +S0
S0 � N
�
0; tg

2
�

Errors εg incorporate observational weightswg calculated using the function voomWithDreamWeights in a procedure similar to that

described by Law et al.107 but using the mixed model fit108:

εg � N
�
0;diag

�
wg

�
s2
ε

�

In thismodel, the day 1 or day 7 effect across subjects was the time effect from themodel. Themixedmodel standardized z statistic

was then used to rank genes for gene set enrichment testing for each cell type. Model 3 was specified as gene � 0 + group + age +

sex + (1|subjectID). The ‘‘group’’ variable corresponds to a combined factor representing the vaccine formulation received (adju-

vanted vs unadjuvanted) and timepoint (baseline or day 1 post vaccination) with 4 level: ‘‘d0_AS03’’, ‘‘d1_AS03’’, ‘‘d0_unadjuvanted’’,

‘‘d1_unadjuvanted’’. A contrast matrix Ldelta corresponding to the difference in fold changes between adjuvanted and unadjuvanted

subjects was applied to test the null hypothesis of 0 difference in fold changes between the groups.

Ldelta = ½ � 1 1 1 � 1 0 0 �
With the first four columns representing the group factor and the two 0s representing age and sex effects. The contrast fit outputs

the difference in fold change after adjusting estimates for age, sex and subject variation with positive effects representing increased

fold change in the adjuvant group compared to the unadjuvanted group. This contrast approach was designed to also capture genes

with opposite vaccination effects in the two groups, for example, upregulation in the AS03 group and downregulation in the nonad-

juvanted subjects. Parameter estimates for each gene borrow information across genes using a mixed effects model-specific empir-

ical Bayes procedure to estimate residual variance with a weighted mixture of chi-squares developed by Hoffman et al.109

Transcriptome data was uniformly processed for all fitted models above. Aggregated (summed) single cell UMI counts were

normalized within each protein based cell type using the trimmed means of M values method with only genes retained with a pooled

count per million above 3 using the edgeR filterByExprs function.110 Cell type specific gene filtering removed genes non expressed by

each lineage from analysis ensured themodel assumptions used to derive precision weights and account for themean variance trend

weremet.We verified the log count permillion vs. fitted residual square root standard deviation had amonotonically decreasing trend

within each cell type. For the AS03 validation cohort, pre normalized data were downloaded from the study supplemental data60 and

a similar model to model 3, contrasting the difference in fold change was fit with a contrast again using a donor random intercept.

Gene set enrichment testing of vaccination effects within cell types using specific hypothesis-driven gene sets or
unbiased analysis
To test enrichment of pathways based on the estimated gene coefficients corresponding to the three vaccination effects defined

above, we performed gene set enrichment analysis using the fgsea97 package multilevel split Monte Carlo method (version

1.16.0). Genes for each coefficient (i.e. models 1-3) and each cell type were ranked by their effect size, (the dream package empirical

Bayesmoderated signed z statistic), corresponding to pre vs post vaccination or the difference in fold change formodel 3 (comparing

unadjuvanted vs. AS03). For enrichment of the day 1 response, five gene sets were derived from bulk transcriptomic data of influenza

vaccination (Table S1), and an additional 25 pathways/gene sets curated from public databases were tested. For Day 7 responses

and the difference in fold change between adjuvanted and unadjuvanted subjects, an unbiased set of pathways were tested from the

Li et al. Blood Transcriptional Modules (BTM),111MSigDBHallmark, reactome and kegg databases. Over-representation of GO terms

for the monocyte pseudotime gene categories was assessed using enrichr.112

Inference of the baseline immune setpoint network
To define cell type specific transcriptional phenotypes robustly associated with high vs low responders of the unadjuvanted vaccine

at baseline, we used limma96 to fit linear models of gene expression as a function of antibody response class (high vs low, coded as a

two-level factor) adjusting for age sex and batch (e.g. in R symbolic notation, gene� AdjMFC + age + sex + batch) as fixed effects on

aggregated (summed) data for each cell type, similar to models above without varying effects for individuals:

yg =
X

j

Xjbj + εg

Errors incorporated voomweights as above. Gene coefficients for each cell type corresponding tomodel adjusted empirical Bayes

regularized estimates for high vs low responder effect at baseline were input into gene set enrichment analysis against the unbiased

set of pathways described above.We then calculated the averagemodule z score22 using log counts permillion from each cell type of

the high responder associated cell phenotypes (using only high responder associated leading edge genes from gene set enrichment

analysis), resulting in a matrix of baseline normalized expression of pathways across 20 individuals (10 high and low responders) for
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each cell type. We next tested for correlation of these signals, both within and between cell types, by calculating the spearman cor-

relation and adjusted p values with the FDR method. We noticed that within the same cell type, pathway enrichments could some-

times be driven by a shared set of genes among gene sets with different pathway labels but essentially shared a substantial fraction of

genes. We therefore calculated the Jaccard similarity coefficient of each pairwise enrichment signal (leading edge genes driving the

high vs low responder difference) within each cell type, and use that to adjust the correlation effect sizes computed above such that

the resulting quantity reflected ‘‘shared latent information’’ (SLI) by subtracting the Jaccard similarity index from the Spearman cor-

relation coefficient r:

SLI = r � AXB

AWB

For example, given enriched pathways A and B within a cell type, if at one extreme, these two pathways are driven by the same

exact shared 10 leading edge genes, the Spearman r of their normalized expression would be equal to 1, yet this apparent correlation

is arbitrary since the two pathways reflect the same genes. However, the shared latent information would be equal to 0 because the

Jaccard similarity of the two sets is also equal to 1 because leading edge genes from the two enriched pathways are the same. The

remaining correlation strength better reflects the phenotypic coupling of intracellular states across individuals after removing the

signal due to gene sharing between gene sets. For inter-cellular correlations between two distinct cell types, we do not subtract

the Jaccard similarity of gene content from r as we consider the same genes to be distinct signals when measured in different

cell types. We further constructed a sub network from a subset of cell types forming the high responder baseline setpoint network.

To identify themost highly connected processes, correlations with adjusted p values < 0.05 were retained and aweighted undirected

networkwas constructed using igraph, retaining only the strongest links above themedianweight withweights reflecting Spearman’s

Rho for intercellular connections and the SLI metric described above for intracellular connections. Each node (high responder cell

phenotype) was also correlated across individuals with the day 7 fold change of a gene expression signature6 reflective of plasma-

blast activity derived from bulk microarray data from the same subjects and select high degree nodes were highlighted in the text.

Single-cell mixed-effect models of gene expression
In addition to the pseudo-bulk models fitted above, we also used single cell mixed effects models to assess consistency and to spe-

cifically test the early response kinetics of the baseline states enriched above, including select AS03 associated response signatures

within innate immune cell subsets.

Early kinetics of baseline setpoint phenotypes

Each cell type specific transcriptional phenotype enriched in high vs low responders in the aggregated/pseudo-bulk linear model

described above were scored in single cells from subjects on day 0 and day 1 as the average expression of the specific leading

edge genes enriched in high vs low responders. The per single cell module scores were fitted with a linear mixed model for each

cell type to 1) re-test the baseline association (high vs. low responders) at the single cell level, and 2) to test their post vaccination

effect size within the same cell subset. These models estimated the variance at the single-cell level instead of at the individual donor

cell-aggregated level. Otherwise these represent conceptually similar models as the ones described above fitted using lme4 with a

donor random intercept, but without voom weights. Twomodels were tested with highly concordant resulting effect sizes: 1) a parsi-

moniousmodel of time relative to vaccinationwith a subject random effect, and 2) amore complexmodel including the time relative to

vaccination, the number of cells per individual sample for a given cell type, age, sex, and a subject random effect. Normalized expres-

sion of eachmodule was standardized within each surface protein-based cell cluster/subset by subtracting themean and dividing by

the standard deviation of the module score across single cells within the cell type. After fitting models, the baseline high vs low

responder effect and the day 1 vs baseline effect sizes and standard errors across subsets was calculated using the emmeans113

package with a custom contrast (e.g., see Figure 4E). All models were checked for convergence criteria.

AS03 specific regulation

Naı̈ve B cells were tested for expression of modules hypothesized to be involved in B cell survival (see below; partly based on the

literature or derived from existing independent data sets). These modules were tested here for their effects at the single cell level;

they were then independently assessed in sorted total B cells in the validation cohort.60 Two modules were defined to reflect survival

of human naı̈ve B cells: 1) A CD40 activation signature22 which was derived from studies of in vitro CD40 activated human B cells; 2)

An apoptosis signature derived by combining signals from the CITE-seq naı̈ve B cell day 1 gene set enrichment comparing AS03

adjuvanted to unadjuvanted individuals. The signals combined the specific naı̈ve B cell leading edge genes from the negatively en-

riched (reflecting AS03 specific downregulation) apoptosis modules (with unadjusted p values < 0.1–we opted for a loser cutoff to

increase sensitivity): reactome activation of BH3 only proteins, Reactome intrinsic pathway for apoptosis, and LI.M160 leukocyte dif-

ferentiation. The cell type specific leading edge genes were scored as above and fitted with age and sex covariates, a combined

factor for vaccine group, timepoint, and random effect for subject ID, with the difference in fold changes calculated using the em-

means package.

Software for implementing analysis workflow
The analysis framework described above is available in an R software package ‘‘scglmmr’’ (https://github.com/MattPM/scglmmr) for

analysis of single cell perturbation experiment data with repeated measures andmulti-individual nested group designs. The software

provides workflows for fitting single cell mixed models, deriving cell signatures, visualization, wrapper functions to implement the
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weighted gene level mixed effects differential expression models described Hoffman and Roussos108 (dream), enrichment using

fgsea, and the network analysis methods described above.

Monocyte differentiation and perturbation pseudotime analysis
To construct a combined monocyte differentiation and perturbation single cell map we used the DDR tree algorithm (Discriminative

Dimensionality Reduction via learning a tree) with monocle 2.59 The trajectory was constructed using the genes that changed as a

function of time (q value <0.15 using the differentialGeneTest in monocle, with ribosomal genes and genes expressed in less than

15 cells removed). The DDRtree algorithm58 was implemented using the monocle function reduceDimension with arguments resi-

dualModelFormulaStr = subjectID and max_components = 2 and pseudotime calculated with function orderCells. Independently

of the genes used to construct the trajectory, we then tested the genes from the mixed effects model of vaccination effects from

monocytes (specific leading edge genes from ’reactome interferon signaling’, ’GO IL6 PRODUCTION’, ’reactome IL4 and IL13

signaling’, ’HALLMARK inflammatory response’, ’KEGG JAK STAT signaling’) for branch dependent differential expression using

the BEAM function from monocle. Select genes were highlighted and categorized based on their expression dynamics along real

time and pseudotime.

Cell frequency analysis
Cell frequencies of activated monocytes gated as HLA-DR+ cells were computed as a fraction of total CD45+CD14+ classical mono-

cytes using flow cytometry data.6 These cell frequencies were compared across subjects (high vs. low responders) at baseline using

a two sided Wilcoxon rank test. The kinetic change of the cell frequency following vaccination was modeled using a mixed effects

model with a single random effect for subject ID similar to the models described above. The kinetics over time were modeled using

an interaction for time and antibody response group (high vs. low AdjMFC). This interaction model was compared to a timepoint only

without the group interaction effect with analysis of variance. The baseline versus day 1 effects for each antibody response groupwas

calculated using the emmeans package.

Analysis of phospho-signaling responses after stimulation of high and low responder baseline PBMCs using CyTOF
The protein phosphorylation markers driving the stimulated phenotype and responding cells were automatically defined using the

HDStIM R package.72 The median anti-phosphorylated protein heavy metal-labelled antibody intensity for each individual sample

and cell type and stimulation was calculated and modeled with a mixed effects model adjusting or batch and using a random effect

for donor ID. The difference in fold change between unstimulated and stimulated cells was calculated using a custom contrast with

the emmeans package.
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